EEC 216 Lecture #10: Power Sources

Rajeevan Amirtharajah University of California, Davis

Outline

• Announcements

- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Announcements

- Design Project 2 due Monday, March 3, at 5 PM in instructor's office
- Final project proposals also due Monday
 - Email a brief description (1 paragraph) of what you plan to evaluate for the final project
 - Attach a paper or papers from the literature that describes the circuit/technology/etc. which is the focus of the project

Outline

- Announcements
- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Adiabatic Charging Analysis

 Solve differential equation assuming input is voltage ramp with duration T

Energy Dissipated With Ramp Driver

- Consider the extreme cases of RC with respect to T
 - RC << T implies less energy dissipation

Example Voltage Ramp: Stepwise Charging

Next Stage Controlled Energy Recovery

Cascaded Logic Energy Recovery Timing

- Charge nth stage nodes and then discharge (n-1)th stage nodes
- How do we implement the energy recovery phase? R. Amirtharajah, EEC216 Winter 2008

Energy Recovery System Block Diagram

- Use circuits to generate power / clock waveforms
- Generators must use as little power as possible
 - Resonant RLC circuits often used in these applications
 - Minimize parasitic losses in power / clock generator

Outline

- Announcements
- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Outline

- Announcements
- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Why worry about power? Power Dissipation

Lead microprocessors power continues to increase

Source: Borkar, De Intel®

Why worry about power? Chip Power Density

Source: Borkar, De Intel®

State-of-the-Art Processor Power

- Reported at ISSCC 2008
 - Sun Chip Multithreading SPARC: 65 nm CMOS, 2.3
 GHz at 1.2 V, 250 W
 - Intel Quad Core Itanium: 65nm CMOS, 2.0 GHz, 170 W
- Careful design still keeping power below 100 W
 - Montecito ISSCC 2005 (dual-core Itanium): 300 W down to 100 W

Previous Processor Power

- Reported at ISSCC 2004
 - IBM POWER5: 130 nm SOI, 1.5 GHz at 1.3 V, incorporates 24 digital temperature sensors distributed over die for hot-spot throttling
 - Sun UltraSPARC: 130 nm CMOS, 1.2 GHz at 1.3 V, 23
 W typical dissipation
 - IBM PowerPC 970: 130 nm SOI, 1.8 GHz at 1.45 V, 57
 W typical dissipation
 - IBM PowerPC 970+: 90 nm SOI, 2.5 GHz at 1.3 V, 49
 W typical dissipation

Intel D865GVHZ Motherboard Example

Table 43. DC Loading Characteristics

		DC Current at:				
Mode	DC Power	+3.3 V	+5 V	+12 V	-12 V	+5 VSB
Minimum loading	190.00 W	5.00 A	11.00 A	9.00 A	0.03 A	0.60 A
Maximum loading	286.00 W	11.00 A	15.00 A	13.00 A	0.10 A	1.40 A

- Minimum load assumes no applications running and no current draw from USB ports or PCI cards
- Maximum load assumes heavy gaming application and 500 mA drawn from each USB port, but no PCI add-in cards
- Specs for board power delivery system, not specific processor-memory configuration
- From Intel Desktop Board Technical Product Specification, Nov. 2003, p. 78

PC Power Supply Design

- Multiple output voltages each with different current (power) specs
 - Supports legacy chip i/o standards, displays, disk drives, speakers, peripherals, modems, etc.
 - Processor supply voltages generated independently of silver box (allows separate optimization, variable voltage design, supports last minute system configuration)

• System power variable with workload

- 1.5X difference between minimum and maximum power
- Variability impacts power electronics design (load regulation of output voltage)

Always minimize cost!

Outline

- Announcements
- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Power Sources for Portable Applications

- Portable electronics drives need for low weight, small volume, stored energy sources
 - Want high specific energy or energy per unit mass (Joules / kg)
 - Maximize energy density or energy per unit volume (Joules / cm³)
 - Must meet peak output power demands

Several stored energy options

- Electrochemical cells (batteries) with various chemistries
- Fuel cells possible alternative
- Power MEMS which also rely on storing energy chemically and then converting it to electricity

Why worry about power ? Battery Size/Weight

Expected battery lifetime increase over the next 5 years: 30 to 40%

From Rabaey, 1995

Recent Battery Scaling and Future Trends

• Battery energy density increasing 8% per year, demand increasing 24% per year (the Economist, January 6, 2005)

Battery Basics

- Battery consists of several electrochemical cells
 - Can be arranged in series (increase output voltage) or parallel (increase output current) or combination
 - Each cell consists of two terminals (anode and cathode) separated by electrolyte
 - These constitute cell's active materials
- When cell connected to load, oxidation-reduction reaction occurs
 - Electrons transferred from anode to cathode
 - Transfer converts chemical energy stored in active material to electrical energy
 - Flows as current through external load

Battery Discharge and Capacity Definitions

- As battery discharges, output voltage drops
 - Battery effectively disconnects from load once voltage drops below cutoff
- Battery capacity defined in charge units (A-h) instead of energy
 - Full charge capacity: capacity remaining at beginning of discharge cycle
 - Full design capacity: capacity for new battery
 - Theoretical capacity: maximum extractable charge based on amount of active material
 - Standard capacity: charge extracted under standard load and temperature conditions
 - Actual capacity: charge delivered under specific load and temperature conditions

Rate Dependent Capacity

- Battery capacity decreases as discharge rate increases
 - When fully charged, electrode surface has maximum concentration of active species
 - Under loading, active species consumed by reaction at electrode and replenished by diffusion from electrolyte bulk
 - Diffusion cannot keep pace with electrochemical reaction, so concentration gradient builds up in electrolyte
 - As load increases, active species concentration at electrode drops below threshold (corresponding to cutoff voltage) and reaction cannot be sustained, eliminating current flow
 - Eventually cell recovers (*charge recovery*) as diffusion flattens concentration gradient
- For sufficiently low discharge rates, operation remains close to ideal

Rate Dependent Capacity Operation

• Rao et al., Computer, Dec. 03

Lithium-Ion Rate Dependent Capacity

• Rao et al., Computer, Dec. 03

Temperature Effect

- Like any chemical reaction, temperature strongly affects battery discharge behavior
- Below room temperature, cell chemical activity decreases
 - Cell internal resistance increases, reducing full charge capacity and increasing slope of discharge curve
- At high temperatures, internal resistance decreases
 - Full charge capacity and voltage increases
 - Higher rate of chemical activity (self-discharge) can offset these other effects and result in less actual capacity
- Difficult for designer to control temperature

Lithium-Ion Temperature Effect

• Rao et al., Computer, Dec. 03

Capacity Fading

- Lithium-ion popular choice for portables
 - High energy density and capacity
- Li-ion batteries lose fraction of capacity with each charge-discharge cycle
 - Unwanted side reactions (electrolyte decomposition, active material dissolution, passive film formation)
 - Irreversible side reactions increase internal cell resistance until battery fails
 - Limit effect by controlling depth of discharge before recharging (constrain battery to only shallow discharges leaving voltage relatively high for recharge)
 - Shallow discharge typically allows battery to undergo more cycles until cutoff voltage finally reached

Lithium-Ion Capacity Fading

• Rao et al., Computer, Dec. 03

Battery Models

• Physical models

- Most accurate, can be used to optimize battery design, but computationally intensive
- Differential equations based on isothermal electrochemical model

Empirical models

- Peukert's Law: $C = LI^{\alpha}$
- C is capacity, L is lifetime, I is constant current
- Ideal battery with constant current load yields $\alpha = 1$
- Exponent provides simple way to model rate dependence
- Does not model time-varying loads

Battery Models (cont.)

• Electrical circuit models

- Attempt to provide equivalent circuit model for battery
- Model using linear passive elements, voltage sources, and lookup tables
- Compatible with HSPICE, Verilog / VHDL

• Add circuit complexity to capture all effects

- Model capacity fading with capacitor whose value decreases linearly with number of charge-discharge cycles
- Temperature effect modeled as RC circuit with temperature-dependent voltage sources
- Discrete-time (state) model in VHDL

Battery Electrical Circuit Models

• Rao et al., Computer, Dec. 03

Outline

- Announcements
- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Fuel Cell Alternative to Battery

- Nickel-cadmium and lithium-ion batteries increased energy capacity 10-15% per year historically
 - Estimate another 15-25% improvement in capacity
- Fuel cells and batteries both generate electricity through electrochemical reactions
 - Chemical reaction between oxygen and hydrogen or hydrogen-rich substance (e.g., methanol current focus of research)
 - Electrodes draw fuel toward porous membrane
 - Hydrogen-rich material breaks down, releasing hydrogen and electrons
 - Hydrogen reacts with oxygen to form water, electrons flow as current in external circuits

Fuel Cells for Portable Applications

- Users can add more fuel to continue operation
- Research on micro fuel cells focused on membrane
 - Proton-exchange membrane (PEM) traditional material but usually too large to be portable
 - Stacks of porous silicon wafers dramatically increases number of generated electrons (proportional to membrane surface area)
 - Other research ongoing on membranes
- Still being investigated as a practical battery alternative
 - Challenges include standardization, cost, fuel flammability
- May reach significant market in next 1-2 years R. Amirtharajah, EEC216 Winter 2008

Outline

- Announcements
- Review: Adiabatic Charging and Energy Recovery
- Lecture 9: Dynamic Energy Recovery Logic
- Lecture 9: Power and Clock Waveform Generation
- Power Supplies
- Batteries and Battery Modeling
- Fuel Cells
- Power MEMS
- Next Time: Energy Harvesting

Power MEMS Motivation

- Battery Technology Limits
 - Enormous military and commercial demand for something better
 - Metric: W-hr/kg
 - Current Battery Technology ~ 100-200 W-hr/kg
- High Density Energy Sources
 - Propulsion
 - Heat Generation
 - Refrigeration
 - Chip Cooling
- Schmidt, ISSCC 03

Power Generation MEMS Options

- Energy Scavenging/Harvesting
 - Vibration
 - Heel Strikes
 - Residual Heat
- Fuel Burning
 - ThermoElectric (TE)
 - ThermoPhotoVoltaic (TPV)
 - Fuel Cells
 - Requires Hydrogen Source
 - Rotating (moving) Machinery
 - Microturbines
- Schmidt, ISSCC 03

Batteries vs. Fuel

- Batteries
 - -~500 Watt-hours per kilogram for Primary
 - -~175 W-h/kg for Secondary (Rechargeable)
- Fuel Combustion
 - -~39,000 W-h/kg for Hydrogen
 - -~14,000 W-h/kg for Propane or Butane
 - -~12,000 W-h/kg for Gasoline
 - -~6,000 W-h/kg for Methanol
- The Challenge:
 - Efficient, Lightweight Conversion

Courtesy: Franz, Schaevitz, Lilliputian Systems

• Schmidt, ISSCC 03

Fuel Burning Advantages vs. Batteries

• Schmidt, ISSCC 03

Thermoelectric Generators

Passive Device

Fuel Insensitive

High Power Density

- Well-Established Macro-Scale Technology
- Schmidt, ISSCC 03

Thermoelectric Generation Materials

- O SiGe:
 - · Readily Available Semiconductor
 - High Efficiency
 - High-Temperature Operation
- Schmidt, ISSCC 03

Membrane Based Thermoelectric Generator

Generator Operation

Thermoelectric Generator Efficiency

• Efficiency of thermoelectric generator inadequate

- High temperature region localized to membrane
- Heat flow from membrane too high for efficient conversion
- Overall device efficiency around 0.02% at 500 degrees
 Celsius
- Biggest loss mechanism is thermal conduction in SiN membrane (without this loss, efficiency boosted to 0.4 %)
- Running hotter (between 700 and 900 degrees Celsius) raises efficiency to 10 %, superior to batteries
- Significant optimizations in metal contacts, reaction chamber design
- Higher power density option: micro gas turbine

MIT Micro Gas Turbine Generator

	Micro Turbo Generator	LiSO2 Battery (BA5590)		
Power Output	50 W	50 W		
Weight	50 grams	1000 grams		
Specific Energy	3500 W-hr/kg	175 W-hr/kg		

• Schmidt, ISSCC 03

Hydrogen Micro Turbine Demonstration

Thrust = 11 g Fuel burn = 16 g/hr Engine weight = 2 grams Turbine inlet temp = 1600°K (2421°F) Rotor speed = 1.2 x 10⁶ RPM Exhaust gas temp = 970°C

• Schmidt, ISSCC 03

Micro Turbine Technical Challenges

- High speed rotation (greater than 1 Million RPM)
 Constrains fabrication precision
- Combustion using silicon package (instead of SiC)
 Constrains conversion efficiency and packaging
- Electrical conversion nontrivial
 - Electrostatic induction (traditionally used electromagnetic induction) and new materials
 - Power electronics for conversion including inductors
- Manufacturing flow complexity (6 wafers, 25 masks)
 - Controlling etches

• Schmidt, ISSCC 03

Micro Rotary Engine

MEMS Implementation

• Wikipedia, GFDL 05

• UCB BSAC, 05