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Announcements

• Design Project 2 due Monday, March 3, at 5 PM 
in instructor’s office

• Final project proposals also due Monday
– Email a brief description (1 paragraph) of what you 

plan to evaluate for the final project

– Attach a paper or papers from the literature that 
describes the circuit/technology/etc. which is the 
focus of the project
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Adiabatic Charging Analysis
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Energy Dissipated With Ramp Driver

• Consider the extreme cases of RC with respect to T
– RC << T implies less energy dissipation
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Example Voltage Ramp: Stepwise Charging
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Next Stage Controlled Energy Recovery
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Cascaded Logic Energy Recovery Timing

• Charge nth stage nodes and then discharge (n-1)th 
stage nodes

• How do we implement the energy recovery phase?
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Energy Recovery System Block Diagram

• Use circuits to generate power / clock waveforms
• Generators must use as little power as possible

– Resonant RLC circuits often used in these 
applications

– Minimize parasitic losses in power / clock generator
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Why worry about power? Power Dissipation
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Why worry about power? Chip Power Density
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State-of-the-Art Processor Power

• Reported at ISSCC 2008
– Sun Chip Multithreading SPARC: 65 nm CMOS, 2.3 

GHz at 1.2 V, 250 W
– Intel Quad Core Itanium: 65nm CMOS, 2.0 GHz, 170 W

• Careful design still keeping power below 100 W
– Montecito ISSCC 2005 (dual-core Itanium): 300 W 

down to 100 W
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Previous Processor Power

• Reported at ISSCC 2004
– IBM POWER5: 130 nm SOI, 1.5 GHz at 1.3 V, 

incorporates 24 digital temperature sensors distributed 
over die for hot-spot throttling

– Sun UltraSPARC: 130 nm CMOS, 1.2 GHz at 1.3 V, 23 
W typical dissipation

– IBM PowerPC 970: 130 nm SOI, 1.8 GHz at 1.45 V, 57 
W typical dissipation

– IBM PowerPC 970+: 90 nm SOI, 2.5 GHz at 1.3 V, 49 
W typical dissipation
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Intel D865GVHZ Motherboard Example

• Minimum load assumes no applications running and 
no current draw from USB ports or PCI cards

• Maximum load assumes heavy gaming application 
and 500 mA drawn from each USB port, but no PCI 
add-in cards

• Specs for board power delivery system, not specific 
processor-memory configuration

• From Intel Desktop Board Technical Product 
Specification, Nov. 2003, p. 78
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PC Power Supply Design
• Multiple output voltages each with different 

current (power) specs
– Supports legacy chip i/o standards, displays, disk 

drives, speakers, peripherals, modems, etc.
– Processor supply voltages generated independently of 

silver box (allows separate optimization, variable 
voltage design, supports last minute system 
configuration)

• System power variable with workload
– 1.5X difference between minimum and maximum power
– Variability impacts power electronics design (load 

regulation of output voltage)
• Always minimize cost!
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Power Sources for Portable Applications
• Portable electronics drives need for low weight, 

small volume, stored energy sources
– Want high specific energy or energy per unit mass 

(Joules / kg)
– Maximize energy density or energy per unit volume 

(Joules / cm3)
– Must meet peak output power demands

• Several stored energy options
– Electrochemical cells (batteries) with various 

chemistries
– Fuel cells possible alternative
– Power MEMS which also rely on storing energy 

chemically and then converting it to electricity
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Why worry about power ? Battery Size/Weight

Expected battery lifetime increase 
over the next 5 years: 30 to 40%

From From RabaeyRabaey, 1995, 1995
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Recent Battery Scaling and Future Trends

• Battery energy density increasing 8% per year, demand 
increasing 24% per year (the Economist,  January 6, 2005)
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Battery Basics

• Battery consists of several electrochemical cells
– Can be arranged in series (increase output voltage) or 

parallel (increase output current) or combination
– Each cell consists of two terminals (anode and cathode) 

separated by electrolyte
– These constitute cell’s active materials

• When cell connected to load, oxidation-reduction 
reaction occurs
– Electrons transferred from anode to cathode
– Transfer converts chemical energy stored in active 

material to electrical energy
– Flows as current through external load



R. Amirtharajah, EEC216 Winter 2008 24

Battery Discharge and Capacity Definitions
• As battery discharges, output voltage drops

– Battery effectively disconnects from load once voltage 
drops below cutoff

• Battery capacity defined in charge units (A-h) 
instead of energy
– Full charge capacity: capacity remaining at beginning 

of discharge cycle
– Full design capacity: capacity for new battery
– Theoretical capacity: maximum extractable charge 

based on amount of active material
– Standard capacity: charge extracted under standard 

load and temperature conditions
– Actual capacity: charge delivered under specific load 

and temperature conditions
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Rate Dependent Capacity
• Battery capacity decreases as discharge rate 

increases
– When fully charged, electrode surface has maximum 

concentration of active species
– Under loading, active species consumed by reaction at 

electrode and replenished by diffusion from electrolyte bulk
– Diffusion cannot keep pace with electrochemical reaction, so 

concentration gradient builds up in electrolyte
– As load increases, active species concentration at electrode 

drops below threshold (corresponding to cutoff voltage) and 
reaction cannot be sustained, eliminating current flow

– Eventually cell recovers (charge recovery) as diffusion 
flattens concentration gradient

• For sufficiently low discharge rates, operation 
remains close to ideal
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Rate Dependent Capacity Operation

• Rao et al., Computer, Dec. 03
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Lithium-Ion Rate Dependent Capacity

• Rao et al., Computer, Dec. 03
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Temperature Effect
• Like any chemical reaction, temperature strongly 

affects battery discharge behavior
• Below room temperature, cell chemical activity 

decreases
– Cell internal resistance increases, reducing full charge 

capacity and increasing slope of discharge curve
• At high temperatures, internal resistance 

decreases
– Full charge capacity and voltage increases
– Higher rate of chemical activity (self-discharge) can 

offset these other effects and result in less actual 
capacity

• Difficult for designer to control temperature
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Lithium-Ion Temperature Effect

• Rao et al., Computer, Dec. 03
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Capacity Fading

• Lithium-ion popular choice for portables
– High energy density and capacity

• Li-ion batteries lose fraction of capacity with each 
charge-discharge cycle
– Unwanted side reactions (electrolyte decomposition, 

active material dissolution, passive film formation)
– Irreversible side reactions increase internal cell 

resistance until battery fails
– Limit effect by controlling depth of discharge before 

recharging (constrain battery to only shallow 
discharges leaving voltage relatively high for recharge)

– Shallow discharge typically allows battery to undergo 
more cycles until cutoff voltage finally reached
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Lithium-Ion Capacity Fading

• Rao et al., Computer, Dec. 03
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Battery Models

• Physical models
– Most  accurate, can be used to optimize battery design, 

but computationally intensive
– Differential equations based on isothermal 

electrochemical model 
• Empirical models

– Peukert’s Law: 
– C is capacity, L is lifetime, I is constant current
– Ideal battery with constant current load yields α = 1
– Exponent provides simple way to model rate 

dependence
– Does not model time-varying loads

αLIC =
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Battery Models (cont.)

• Electrical circuit models
– Attempt to provide equivalent circuit model for battery
– Model using linear passive elements, voltage sources, 

and lookup tables
– Compatible with HSPICE, Verilog / VHDL

• Add circuit complexity to capture all effects
– Model capacity fading with capacitor whose value 

decreases linearly with number of charge-discharge 
cycles

– Temperature effect modeled as RC circuit with 
temperature-dependent voltage sources

• Discrete-time (state) model in VHDL
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Battery Electrical Circuit Models

• Rao et al., Computer, Dec. 03
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Fuel Cell Alternative to Battery
• Nickel-cadmium and lithium-ion batteries 

increased energy capacity 10-15% per year 
historically
– Estimate another 15-25% improvement in capacity

• Fuel cells and batteries both generate electricity 
through electrochemical reactions
– Chemical reaction between oxygen and hydrogen or 

hydrogen-rich substance (e.g., methanol current focus 
of research)

– Electrodes draw fuel toward porous membrane
– Hydrogen-rich material breaks down, releasing 

hydrogen and electrons
– Hydrogen reacts with oxygen to form water, electrons 

flow as current in external circuits
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Fuel Cells for Portable Applications
• Users can add more fuel to continue operation
• Research on micro fuel cells focused on 

membrane
– Proton-exchange membrane (PEM) traditional material 

but usually too large to be portable
– Stacks of porous silicon wafers dramatically increases 

number of generated electrons (proportional to 
membrane surface area)

– Other research ongoing on membranes
• Still being investigated as a practical battery 

alternative
– Challenges include standardization, cost, fuel 

flammability
– May reach significant market in next 1-2 years
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Power MEMS Motivation

• Schmidt, ISSCC 03
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Power Generation MEMS Options

• Schmidt, ISSCC 03
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Batteries vs. Fuel

• Schmidt, ISSCC 03
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Fuel Burning Advantages vs. Batteries

• Schmidt, ISSCC 03
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Thermoelectric Generators

• Schmidt, ISSCC 03
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Thermoelectric Generation Materials

• Schmidt, ISSCC 03
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Membrane Based Thermoelectric Generator

• Schmidt, ISSCC 03
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Generator Operation

• Schmidt, ISSCC 03
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Thermoelectric Generator Efficiency
• Efficiency of thermoelectric generator inadequate

– High temperature region localized to membrane
– Heat flow from membrane too high for efficient 

conversion
– Overall device efficiency around 0.02% at 500 degrees 

Celsius
– Biggest loss mechanism is thermal conduction in SiN

membrane (without this loss, efficiency boosted to 0.4 
%)

– Running hotter (between 700 and 900 degrees Celsius) 
raises efficiency to 10 %, superior to batteries

• Significant optimizations in metal contacts, 
reaction chamber design

• Higher power density option: micro gas turbine
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MIT Micro Gas Turbine Generator

• Schmidt, ISSCC 03
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Hydrogen Micro Turbine Demonstration

• Schmidt, ISSCC 03
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Micro Turbine Technical Challenges

• Schmidt, ISSCC 03

• High speed rotation (greater than 1 Million RPM)
– Constrains fabrication precision

• Combustion using silicon package (instead of SiC)
– Constrains conversion efficiency and packaging

• Electrical conversion nontrivial
– Electrostatic induction (traditionally used 

electromagnetic induction) and new materials
– Power electronics for conversion including inductors

• Manufacturing flow complexity (6 wafers, 25 
masks)
– Controlling etches
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Micro Rotary Engine

• Wikipedia, GFDL 05

MEMS Implementation

• UCB BSAC, 05
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