EEC 210 Fall 2005 Midterm

Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis

November 15, 2005

Name:

Instructions: This test consists of 4 problems and 13 pages, including the cover sheet. Please make sure that you have all of them. This is an open-book, open-notes test. State any assumptions you make and show complete work to receive credit. The time limit is 80 minutes. The problems are weighted as shown below

Grading:

Problem	Maximum	Score
1	12	
2	16	
3	10	
4	12	
Total	50	

1 CMOS Inverter Amplifier

Figure 1 shows a CMOS inverter biased as a linear amplifier. For this problem, use the transistor parameters in Table 1.

Parameter	NMOS	PMOS
V_t	1 V	-1 V
L_d	0	0
X_d k'	0	0
k'	$300 \ \mu A/V^2$	$100 \ \mu A/V^2$
γ	0	0
W/L	2	6
λ	$0.1 \ V^{-1}$	$0.1 \ V^{-1}$

Table 1: Problem 1 Transistor Parameters.

Problem 1.1 (3 points) Assume $V_I = 1.5$ V. For what range of V_O will the circuit best act as an amplifier? What is the output voltage swing?

Problem 1.2 (2 points) Find the power dissipation assuming the bias conditions in Problem 1.1.

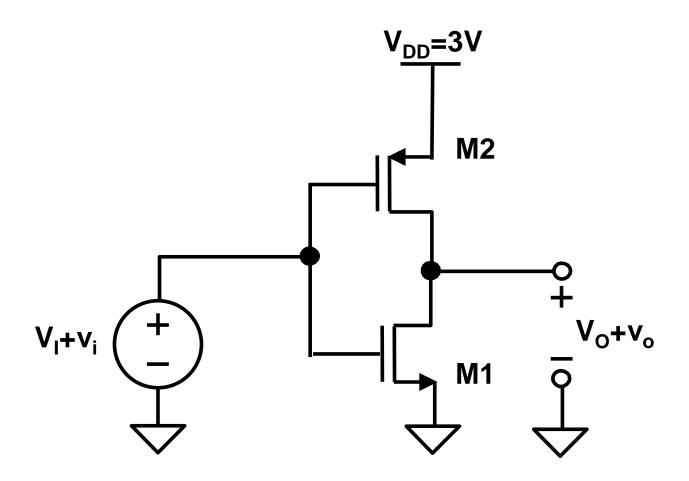


Figure 1: CMOS inverter as linear amplifier.

Problem 1.3 (2 points) Find the small-signal output resistance R_o assuming the bias conditions in Problem 1.1.

Problem 1.4 (**3 points**) Find the small-signal gain assuming the bias conditions in Problem 1.1.

Problem 1.5 (2 points) Suppose that γ is nonzero and that through source-well biasing, $V_{tn} = 1.25$ V and $V_{tp} = -1.25$ V. How does this affect the small-signal gain (assume the bias conditions in Problem 1.1)?

2 Differential Amplifier

Figure 2 shows the circuit schematic for a differential amplifier. For this problem, use the transistor parameters in Table 2. Assume the following circuit parameters: $I_{TAIL} = 590 \mu \text{A}$, $R_{TAIL} = 30 \text{ k}\Omega$, $R1 = 3 \text{ k}\Omega$, $R2 = 6 \text{ k}\Omega$, $(W/L)_1 = (W/L)_2 = 8$.

Parameter	NMOS	PMOS
V_t	1 V	-1 V
L_d	0	0
$X_d \\ k'$	0	0
k'	$300 \ \mu A/V^2$	$100~\mu {\rm A/V^2}$
γ	0	0
λ	0	0

Table 2: Problem 2 Transistor Parameters.

Problem 2.1 (3 points) Find V_I such that $V_s = 300$ mV.

Problem 2.2 (3 points) Find $(W/L)_3 = (W/L)_4$ such that $V_O = 1.5$ V, assuming the bias conditions you found in Problem 2.1.

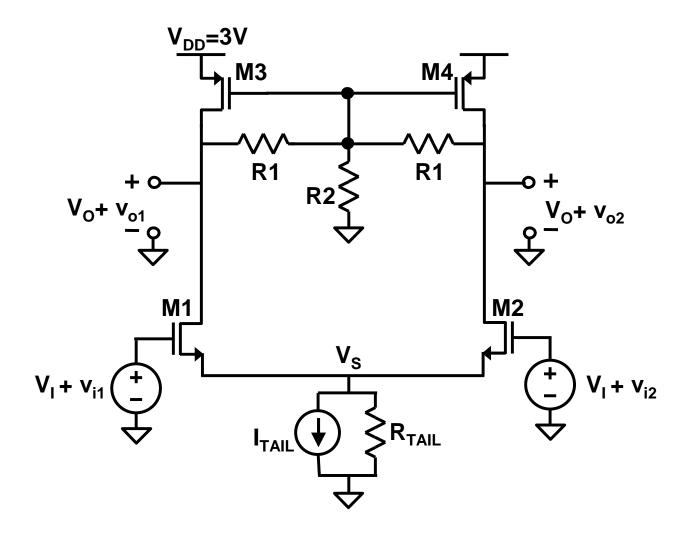


Figure 2: Differential amplifier.

Problem 2.3 (4 points) Draw and label the small-signal differential-mode half circuit, and find the differential-mode gain, $\frac{v_{od}}{v_{id}}$, where $v_{id} = v_{i1} - v_{i2}$ and $v_{od} = v_{o1} - v_{o2}$.

Problem 2.4 (6 points) Draw and label the small-signal common-mode half circuit, and find the common-mode gain, $\frac{v_{oc}}{v_{ic}}$, where $v_{ic} = 0.5(v_{i1} + v_{i2})$ and $v_{oc} = 0.5(v_{o1} + v_{o2})$.

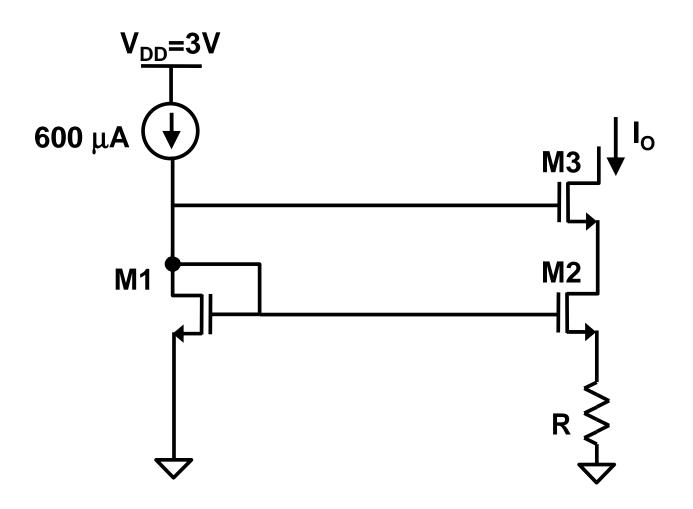


Figure 3: Current source.

3 Current Source

Figure 3 shows a current source circuit. For this problem, use the transistor parameters in Table 3. For the circuit in Figure 3, assume the following circuit parameters: $R = 10 \text{ k}\Omega$, $(W/L)_1 = (W/L)_3 = 2$, $(W/L)_2 = 20$.

Problem 3.1 (2 points) Find the output current I_O .

Parameter	NMOS	PMOS
V_t	1 V	-1 V
L_d	0	0
$X_d \\ k'$	0	0
k'	$300 \ \mu A/V^2$	$100 \ \mu A/V^2$
γ	0	0
λ	$0.1 \ V^{-1}$	$0.1 \ V^{-1}$

Table 3: Problem 3 Transistor Parameters.

Problem 3.2 (3 points) Find the minimum output voltage $V_{OUT}(MIN)$.

Problem 3.3 (3 points) Find the output resistance R_o .

Problem 3.4 (2 points) Resistor R can be used to model the parasitic resistance associated with routing current sources for long distances on an IC. Find the largest value for R such that I_O is within 1% of the current reference value in Figure 3. Assume $(W/L)_1 = (W/L)_3 = (W/L)_2 = 2$.

4 Current Source Reference

Figure 4 shows a current reference circuit. For this problem, use the transistor parameters in Table 4. For the circuit in Figure 4, assume the following circuit parameters: $R = 10 \text{ k}\Omega$, $(W/L)_1 = (W/L)_2$, $(W/L)_3 = 2$, and $(W/L)_4 = (W/L)_5 = (W/L)_6 = 6$.

Parameter	NMOS	PMOS
V_t	1 V	-1 V
L_d	0	0
$egin{array}{c} X_d \ k' \end{array}$	0	0
k'	$300 \ \mu A/V^2$	$100~\mu {\rm A/V^2}$
γ	0	0
λ	0	0

Table 4: Problem 4 Transistor Parameters.

Problem 4.1 (6 points) Find $(W/L)_1 = (W/L)_2$ and $(W/L)_7$ such that I_O is dependent on process parameters only (i.e., independent of bias point to first order).



Figure 4: Current source reference.

Problem 4.2 (6 points) One can model the thermal noise of resistor R as a small-signal current source i_n in parallel with R. Quantify the impact of the noise current source on the total output current $I_O + i_o$, assuming the bias point you found in Problem 4.1 and $|i_n| = 1\mu A$.