EEC 118 Lecture #11: CMOS Design Guidelines
Alternative Static Static Logic Families

Rajeevan Amirtharajah
University of California, Davis

Jeff Parkhurst
Intel Corporation
Announcements

• Homework 5 this week
• Lab 4 Parts 1 + 2 – keep working!
• Midterm next Monday, May 2 (in class)
Outline

• Finish Logical Effort Discussion
• Review: Static CMOS Sizing
• Design Guidelines for CMOS
• Pseudo-NMOS Logic: Rabaey 6.2
• Pass Transistor Circuits: Rabaey 6.2 (Kang & Leblebici 9.1-9.2)
• Midterm Overview
Review: CMOS Sizing

- Equivalent inverter approach: replace transistors which are “on” with equivalent transistor
- Use equivalent inverter to find V_M, delays, etc.

$$\frac{1}{W_{peff}} = \frac{1}{W_{pa}} + \frac{1}{W_{pb}}$$

$$W_{neff} = W_{nb}$$
Review of Sizing

• Gate delays depend on which inputs switch
 – Normally sized for worst-case delay
 – Best-case (fastest) delay also important due to race conditions in a pipelined datapath

• Switching threshold V_M normally considers all inputs switching

• Delay estimation
 – Combine switching transistors into equivalent inverter
Example: NAND gate

- Circuit:
 - Load cap $C_L = 400\, \text{fF}$
 - PMOS $W/L = 2$
 - NMOS $W/L = 1$
 - $k_n' = 200\, \text{mA/V}^2$
 - $k_p' = 80\, \text{mA/V}^2$
 - $V_T = 0.5\, \text{V}$

1st: Find delay of inverter

2nd: Find delay of NAND
Equivalent Inverter

• Problems with equivalent inverter method:
 – Need to take into account load capacitance C_L
 • Depends on number of transistors connected to output (junction capacitances)
 • Even transistors which are off (not included in equivalent inverter) contribute to capacitance (i.e. PMOS Drain Capacitance)
 – Need to include capacitance in intermediate stack nodes (NMOS caps). Worst-case: need to charge/discharge all nodes
 – Body effect of stacked transistors
Load Capacitance

• Output capacitance includes junction caps of all transistors on output

• Reducing load capacitance
 – Minimize number of transistors on output node
 – Tapering transistor stacks:
 • Wider transistors closest to power and ground nodes, narrower at output
 • Transistors closest to power nodes carry more current
Intermediate Node Capacitances

• Internal capacitances in CMOS gates are charged and discharged
 – Depends on input pattern
 – Increases delay of gate

• Simple analysis
 – Combine internal capacitances into output load
 – Assumes all capacitances charged and discharged fully

• Effect on delay analysis
 – Gate delay depends on timing of inputs!
CMOS Design Guidelines I

• Transistor sizing
 – Size for worst-case delay, threshold, etc
 – Tapering: transistors near power supply are larger than transistors near output

• Transistor ordering
 – Critical signal is defined as the latest-arriving signal to input of gate of interest.
 – Put critical signals closest to output
 • Stack nodes are discharged by early signals
 • Reduced body effect on top transistor
CMOS Design Guidelines II

• **Limit fan-in of gate**
 – Fan-in: number of gate inputs
 – Affects size of transistor stacks
 – Normally fan-in limit is 3-4

• **Convert large multi-input gates into smaller chain of gates**

• **Limit fanout of gate**
 – Fanout: number of gates connected to output
 – Capacitive load: affects gate delay

• **NANDs are better than NORs**
 – Series NMOS devices less area, capacitance than equivalent series PMOS devices
CMOS Disadvantages

• For N-input CMOS gate, 2N transistors required
 – Each input connects to an NMOS and PMOS transistor
 – Large input capacitance: limits fanout

• Large fan-in gates: always have long transistor stack in PUN or PDN
 – Limits pullup or pulldown delay
 – Requires very large transistors

• Single-stage gates are inverting
Pseudo-NMOS Logic

• Pseudo-NMOS: replace PMOS PUN with single “always-on” PMOS device (grounded gate)

• Same problems as true NMOS inverter:
 – V_{OL} larger than 0 V
 – Static power dissipation when PDN is on

• Advantages
 – Replace large PMOS stacks with single device
 – Reduces overall gate size, input capacitance
 – Especially useful for wide-NOR structures
Pseudo-NMOS Inverter Circuit

- Replace PUN or resistor with “always-on” PMOS transistor
- Easier to implement in standard process than large resistance value

PMOS load transistor:
- On when $V_{GS} < V_{TP} \rightarrow V_{GS} = -V_{DD}$: transistor always on
- Linear when $V_{DS} > V_{GS}-V_{TP} \rightarrow V_{out}-V_{DD} > -V_{DD}-V_{TP} \rightarrow V_{out} > -V_{TP}$
- Saturated when $V_{DS} < V_{GS}-V_{T} \rightarrow V_{out}-V_{DD} < -V_{DD}-V_{TP} \rightarrow V_{out} < -V_{TP}$

Remember: V_T (PMOS) < 0
Pseudo-NMOS Inverter: V_{OH}

- V_{OH} for pseudo-NMOS inverter:
 - $V_{in} = 0$
 - NMOS in cutoff: no drain current

- Result: V_{OH} is V_{DD} (as in resistive-load inverter or CMOS inverter case)
Pseudo-NMOS Inverter: V_{OL}

- Find VOL of pseudo-NMOS inverter:
 - $V_{in} = V_{DD}$: NMOS on in linear mode (assume $V_{OL} < V_{DD-V_{T,n}}$)
 \[I_{Dn} = k_n \left((V_{DD} - V_{Tn}) V_{OL} - \frac{1}{2} V_{OL}^2 \right) \]
 - PMOS on in saturation mode (assume)
 \[I_{Dp} = \frac{1}{2} k_p \left(-V_{DD} - V_{Tp} \right)^2 \] (neglecting λ
 - Setting $I_{dn} = I_{dp}$:
 \[\frac{1}{2} k_n V_{OL}^2 - k_n \left(V_{DD} - V_{Tn} \right) V_{OL} + \frac{1}{2} k_p \left(-V_{DD} - V_{Tp} \right)^2 = 0 \]
- Key point: V_{OL} is not zero
 - Depends on thresholds, sizes of N and P transistors
Pseudo NMOS Inverter: I/V Curves

I/V curve for NMOS:

- Plot of $-I_{DS}$ vs $-V_{DS}$ since current is from source to drain
- Only one curve since V_{GS} fixed

I/V curve for PMOS:

$V_{GS} = -V_{DD}$

$-V_{DS} = -(V_{out} - V_{DD})$
Pseudo NMOS Inverter: VTC

- Similar VTC to resistive-load inverter
 - Sharper transition region, smaller area

- VOL worse than CMOS inverter
Transmission Gate Logic

• NMOS and PMOS connected in parallel
• Allows full rail transition – ratioless logic
• Equivalent resistance relatively constant during transition
• Complementary signals required for gates
• Some gates can be efficiently implemented using transmission gate logic (XOR in particular)
Equivalent Transmission Gate Resistance

For a rising transition at the output (step input)

- NMOS sat, PMOS sat until output reaches $|V_{TP}|$
- NMOS sat, PMOS lin until output reaches $V_{DD} - V_{TN}$
- NMOS off, PMOS lin for the final $V_{DD} - V_{TN}$ to V_{DD} voltage swing
Equivalent Resistance

- Equivalent resistance R_{eq} is parallel combination of $R_{eq,n}$ and $R_{eq,p}$
- R_{eq} is relatively constant

![Graph showing equivalent resistance](image)
Resistance Approximations

- To estimate equivalent resistance:
 - Assume both transistors in linear region
 - Ignore body effect
 - Assume voltage difference (V_{DS}) is small

\[
R_{eq,n} \approx \frac{1}{k_n(V_{DD} - V_{tn})} \quad R_{eq,p} \approx \frac{1}{k_p(V_{DD} - |V_{tp}|)}
\]

\[
R_{eq} \approx \frac{1}{k_n(V_{DD} - V_{tn}) + k_p(V_{DD} - |V_{tp}|)}
\]
Equivalent Resistance – Region 1

• NMOS saturation:

\[R_{eq,n} = \frac{(V_{DD} - V_{out})}{\frac{1}{2} k_n (V_{DD} - V_{out} - V_{tn})^2} \]

• PMOS saturation:

\[R_{eq,p} = \frac{(V_{DD} - V_{out})}{\frac{1}{2} k_p (-V_{DD} - V_{tp})^2} \]
Equivalent Resistance – Region 2

- **NMOS saturation:**
 \[R_{eq,n} = \frac{(V_{DD} - V_{out})}{\frac{1}{2} k_n (V_{DD} - V_{out} - V_{tn})^2} \]

- **PMOS linear:**
 \[R_{eq,p} = \frac{2(V_{DD} - V_{out})}{k_p \left(2(V_{DD} - |V_{TP}|)(V_{DD} - V_{out}) - (V_{DD} - V_{out})^2 \right)} \]
 \[= \frac{2}{k_p \left[2(V_{DD} - |V_{TP}|) - (V_{DD} - V_{out}) \right]} \]
Equivalent Resistance – Region 3

- NMOS cut off: \(R_{eq,n} = \infty \)

- PMOS linear:
 \[
 R_{eq,p} = \frac{2}{k_p \left[2(V_{DD} - |V_{TP}|) - (V_{DD} - V_{out}) \right]}
 \]
Transmission Gate Logic

• Useful for multiplexers (select between multiple inputs) and XORs

• Transmission gate implements logic function $F = A$ if S
 – If S is 0, output is floating, which should be avoided
 – Always make sure one path is conducting from input to output

• Only two transmission gates needed to implement $A\overline{S} + \overline{A}S$
 – Transmission Gate 1: A if \overline{S}
 – Transmission Gate 2: \overline{A} if S
• If $S = 0$, $F = A$ and when $S = 1$, $F = \sim A$
Transmission Gate Multiplex器

\[F = A\bar{S} + BS \]
PMOS devices in parallel with NMOS transistors pass full V_{DD} (only one logic path shown above)

Requires more devices, but each can be sized smaller than static CMOS

Output inverter reduces impact of fanout
Next Topic: Dynamic Circuits

- Extend dynamic sequential circuit idea to logic circuits
 - Improved speed
 - Reduced area
 - Challenging to design: timing and noise issues, charge sharing, leakage
 - Preferred design style for high performance circuits
Midterm Overview

• Closed book, closed notes
 – Formula sheet provided (see last year’s exam)
 – Need to know IDS equations, capacitor delay equation, dynamic power equation, timing parameter definitions

• Transistor Operation

• Inverters

• Static CMOS Combinational Logic

• Sequential Logic

• Labs

• (Logical Effort)