EEC 118 Lecture #9: Sequential Logic

Rajeevan Amirtharajah
University of California, Davis

Jeff Parkhurst
Intel Corporation
Announcements

• Lab 4, Part 1 this week
• HW4 due Friday, 4PM in box, Kemper 2131
• Lab 3, Part 2 report due this week
Outline

• Review: Static CMOS Logic
• Finish Static CMOS transient analysis
• Sequential MOS Logic Circuits: Rabaey, 7.1-7.3 (Kang & Leblebici, 8.1-8.5)
• Next Topic: Logical Effort
Sequential Logic Basic Definition

• Combinational circuits’ output is a function of the circuit inputs and a delay time
 – Examples: NAND, NOR, XOR, adder, multiplier

• Sequential circuits’ output is a function of the circuit inputs, previous circuit state, and a delay time
 – Examples: Latches, flip-flops, FSMs, pipelined adders and multipliers, microprocessors
 – Sequential elements are critical to implementing techniques such as feedback or blocks such as memory
Sequential Logic Example: Mealy FSM

- Two information storage mechanisms
 - Positive feedback-based (static) circuits
 - Charge storage-based (dynamic) circuits
- Clock signal Φ controls timing of state (memory) updates
Positive Feedback: Bistability

\[V_{i1} \quad V_{o1} = V_{i2} \quad V_{o2} \]

\[V_{i1} = V_{o2} \]

\[V_{i2} = V_{o1} \]

C (metastable)
Gain should be larger than 1 in the transition region
Bistable Elements

- Bistable elements have two stable states or operation modes

- Cross-coupled inverters are the most basic bistable element
 - Circuit forms the basis of latches and SRAM memory
 - Stable points on the VTC are those with the lowest energy
 - Points with high energy are unstable, perturbations are amplified
Set-Reset (SR) Latch

- Change inverters to NAND or NOR gates, with second inputs = S(set) and R(reset)

- Allows control of the state of the bistable element

- One input state is not allowed

- Gating S and R with the clock prevents the latch from responding except during one phase of the clock cycle
SR Latch

- Sequential circuits: circuits which “store state”: circuits with memory elements
- Latches: store previous output value for certain input combinations
- SR latch (NAND-based):

- Diagram of SR latch with truth table:
- Table:

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_{next}</th>
<th>\overline{Q}_{next}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q</td>
<td>\overline{Q}</td>
</tr>
</tbody>
</table>
Other Latches

• Clocked SR latch
 – Adds clock input. Latch output can only be set/reset when clk=1 (or clk=0)

• Other latch types:
 – JK latch: Removes “not allowed” state – e.g., toggles when inputs are both 1
 – T latch: Toggles when T input = 1
 – D latch: Output = D input
Latch Circuits

- Many methods for implementing latches
 - Standard CMOS gates (cross-coupled NAND, etc)
 - Transmission gates
 - Tri-state inverters

When $en=0$, F is “floating”, i.e. high impedance
Positive Dynamic Transmission Gate Latch

- No feedback devices
- Data stored on input capacitance of inverter I0
- Dynamic logic issues apply: leakage, capacitive coupling, charge sharing
Transmission Gate Positive Static Latch
NMOS Pass Gate Positive Static Latch

- Fewer devices, less area, lower clock load
- Threshold drop on internal nodes implies more static power, less noise margin
Master-Slave Flip-Flop

- By cascading two level-sensitive latches, one type of edge triggered flip-flop is created
- JK latch can be used for first stage so that no input combinations are invalid
- SR latch is then used for the second stage because inputs cannot be invalid
- Rather than using logic gate-based latches, can cascade latches such as above (e.g., transmission gate dynamic or static latches)
Edge-Triggered Flip-Flops

• Types of latches/flip-flops:
 – *Level-sensitive*: output is set when clock is a certain level (0 or 1)
 – *Edge-triggered*: output can only be set on a clock edge (rising or falling)

• Advantages of edge-triggered flip-flops:
 – Data only needs to be stable at clock edge
 – Reduces *race conditions*: potential errors where an input data change travels through multiple latches during their “transparent” phase
Dynamic Positive Edge-Triggered FF

- No feedback devices
- Data stored on input capacitances of inverters I0 and I1
- Dynamic logic issues apply: leakage, capacitive coupling, charge sharing
Clocked Circuit Timing

• Timing definitions:
 – Clock-to-Q or Propagation Delay (t_{clkQ}): delay of flip-flop from clock edge to output Q

 – Setup Time (t_{setup}): amount of time before clock edge that data has to be stable. If data arrives after this time, it will not be latched correctly.

 – Hold Time (t_{hold}): amount of time after clock edge that data has to be stable.

• It is possible to trade off setup and hold time with flip-flop circuit design

 – Modify data and clock timing relationship by delaying one of the two signals
Flip-Flop: Timing Definitions

From Digital Integrated Circuits – Jan Rabaey Notes
Signals must propagate out of flip-flop, through combinational logic, and be stable before next clock edge (clock period = T, clock frequency = f).
Staticized Dynamic Positive Edge-Triggered FF

- Use weak feedback inverters to enhance robustness
- Returns to reduced clock load static flip-flop with same sizing issues
Clock Overlap Failures

1. Both high simultaneously, race condition from D to Q
2. Node A can be driven simultaneously by D and B
1. Both high simultaneously, race condition from D to Q
2. Node A can be driven simultaneously by D and B
Nonoverlapping Clocks Methodology

- Guarantee nonoverlap period long enough
- Note: internal nodes left high Z during nonoverlap
C2MOS Edge Triggered Flip-Flop

- Tristate inverters eliminate clock overlap race condition
Zero-Zero Overlap Condition

- Both phases low simultaneously enables opposite nets
High-High Overlap Condition

- Both phases high simultaneously enables opposite nets
C²MOS Design

- Clock overlap problems eliminated as long as rise and fall times remain fast
 - Slow rise / fall times imply pullup and pulldown nets on simultaneously resulting in potential errors, static power
- Dynamic flip-flop style leaves output high Z
 - Must take care when using since output wire could be exposed to many more noise sources than internal nodes
- Mix and match styles by using C²MOS as master and other types of latch as slave
- Clock load small, but potentially larger than transmission gate dynamic latches due to PMOS sizing
Pipelining

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder</th>
<th>Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_1 + b_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$a_2 + b_2$</td>
<td>$</td>
<td>a_1 + b_1</td>
</tr>
<tr>
<td>3</td>
<td>$a_3 + b_3$</td>
<td>$</td>
<td>a_2 + b_2</td>
</tr>
<tr>
<td>4</td>
<td>$a_4 + b_4$</td>
<td>$</td>
<td>a_3 + b_3</td>
</tr>
<tr>
<td>5</td>
<td>$a_5 + b_5$</td>
<td>$</td>
<td>a_4 + b_4</td>
</tr>
</tbody>
</table>

From Digital Integrated Circuits – Jan Rabaey Notes
Next Topic: Logical Effort

• Systematic method for optimizing CMOS circuits for speed
 – Balances gate delays and logic depth
 – Enables systematic method of finding minimum sizes to achieve delay specification
 – Implicitly assumes switch RC model for propagation delay