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Announcements

• Quiz 1 today!

• Lab 2 reports due this week

• Lab 3 this week

• HW 3 due this Friday at 4 PM in box, Kemper 
2131
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Outline

• Review: CMOS Inverter Transient Characteristics

• Review: Inverter Power Consumption 

• Combinational MOS Logic Circuits: Rabaey 6.1-
6.2 (Kang & Leblebici, 7.1-7.4)

• Combinational MOS Logic Transient Response

– AC Characteristics, Switch Model
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Review: Logic Circuit Delay

• For CMOS (or almost all logic circuit families), only 
one fundamental equation necessary to determine 
delay:

• Consider the discretized version:

• Rewrite to solve for delay:

• Only three ways to make faster logic:   C,   ΔV,   I

dt
dVCI =

t
VCI
Δ
Δ
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I
VCt Δ

=Δ



Amirtharajah/Parkhurst, EEC 118 Spring 2011 5

Review: Inverter Delays
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• High-to-low and low-to-high transitions (exact):

• Similar exact method to find rise and fall times

• Note: to balance rise and fall delays (assuming VOH = 
VDD, VOL = 0V, and VT0,n=VT0,p) requires
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Review: Inverter Power Consumption

• Static power consumption (ideal) = 0

– Actually DIBL (Drain-Induced Barrier Lowering), 
gate leakage, junction leakage are still present

• Dynamic power consumption
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Static CMOS
• Complementary pullup

network (PUN) and pulldown
network (PDN)

• Only one network is on at a 
time

• PUN: PMOS devices
– Why?

• PDN: NMOS devices
– Why?

• PUN and PDN are dual 
networks

PUN

PDN

F

A
B
C

A
B
C
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Dual Networks

B

A F

• Dual networks: parallel 
connection in PDN = series 
connection in PUN, vice-
versa

• If CMOS gate implements 
logic function F:

– PUN implements function F

– PDN implements function G 
= F

Example: NAND gate

parallel

series
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NAND Gate

• NAND function: F = A•B

• PUN function: F = A•B = A + B

– “Or” function (+) → parallel connection

– Inverted inputs A, B → PMOS transistors

• PDN function: G = F = A•B 

– “And” function (•) → series connection

– Non-inverted inputs → NMOS transistors
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• PDN: G = F = A+B

• PUN: F = A+B = A•B

• NOR gate operation: F = A+B

NOR Gate

A

B

A B
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Analysis of CMOS Gates

• Represent “on” transistors as resistors

1 1

1
RW

W

W
R

R

• Transistors in series → resistances in series
• Effective resistance = 2R
• Effective length = 2L
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Analysis of CMOS Gates (cont.)
• Represent “on” transistors as resistors

0 0

0

RW
W W R R

• Transistors in parallel → resistances in parallel
• Effective resistance = ½ R
• Effective width = 2W
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CMOS Gates: Equivalent Inverter

• Represent complex gate as inverter for delay 
estimation

• Typically use worst-case delays
• Example: NAND gate

– Worst-case (slowest) pull-up: only 1 PMOS “on”
– Pull-down: both NMOS “on”

WN

WN

WP WP WP

½ WN
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Example: Complex Gate
Design CMOS gate for this truth table:

A B C F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

F = A•(B+C)
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A

Example: Complex Gate
Design CMOS gate for this logic function:

F = A•(B+C) = A + B•C

1. Find NMOS pulldown network diagram:
G = F = A•(B+C)

CB

Not a unique solution: can exchange order of 
series connection
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Example: Complex Gate

2. Find PMOS pullup network diagram: F = A+(B•C)

Not a unique solution: can exchange order of 
series connection (B and C inputs)

C

B
A

F
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CB

A

C

B
A WP

WP

WP

WN

WN

Completed gate:

WN

Example: Complex Gate

F

• What is worse-case pullup delay?

• What is worse-case pulldown delay?

• Effective inverter for delay calculation: 

½ WP

½ WN
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CMOS Gate Design
• Designing a CMOS gate:

– Find pulldown NMOS network from logic function 
or by inspection

– Find pullup PMOS network
• By inspection
• Using logic function
• Using dual network approach

– Size transistors using equivalent inverter
• Find worst-case pullup and pulldown paths
• Size to meet rise/fall or threshold requirements
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Analysis of CMOS gates

• Represent “on” transistors as resistors

1 1

1
RW

W

W
R

R

• Transistors in series → resistances in series
• Effective resistance = 2R
• Effective width = ½ W (equivalent to 2L)
• Typically use minimum length devices (L = Lmin)
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Analysis of CMOS Gates (cont.)
• Represent “on” transistors as resistors

0 0

0

RW
W W R R

• Transistors in parallel → resistances in parallel
• Effective resistance = ½ R
• Effective width = 2W
• Typically use minimum length devices (L = Lmin)
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Equivalent Inverter
• CMOS gates: many paths to Vdd and Gnd

– Multiple values for VM, VIL, VIH, etc

– Different delays for each input combination

• Equivalent inverter
– Represent each gate as an inverter with 

appropriate device width

– Include only transistors which are on or switching

– Calculate VM, delays, etc using inverter equations
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Static CMOS Logic Characteristics

• For VM, the VM of the equivalent inverter is used 
(assumes all inputs are tied together)
– For specific input patterns, VM will be different

• For VIL and VIH, only the worst case is interesting 
since circuits must be designed for worst-case 
noise margin

• For delays, both the maximum and minimum 
must be accounted for in race analysis
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Equivalent Inverter: VM

• Example: NAND gate threshold VM
Three possibilities:

– A & B switch together

– A switches alone

– B switches alone

• What is equivalent inverter for each case?
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Equivalent Inverter: Delay

• Represent complex gate as inverter for delay 
estimation

• Use worse-case delays
• Example: NAND gate

– Worse-case (slowest) pull-up: only 1 PMOS “on”
– Pull-down: both NMOS “on”

WN

WN

WP WP WP

½ WN
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BA WN

WP

Example: NOR gate

• Find threshold voltage VTH when 
both inputs switch 
simultaneously

• Two methods:

– Transistor equations (complex)

– Equivalent inverter

– Should get same answer

A

B
F

WN

WP



Amirtharajah/Parkhurst, EEC 118 Spring 2011 26

CB

A

C

B
A WP

WP

WP

WN

WN

Completed gate:

WN

Example: Complex Gate

F

• What is worse-case pullup delay?

• What is worse-case pulldown delay?

• Effective inverter for delay calculation: 

½ WP

½ WN
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Transistor Sizing

• Sizing for switching threshold

– All inputs switch together

• Sizing for delay

– Find worst-case input combination

• Find equivalent inverter, use inverter analysis to 
set device sizes
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Common CMOS Gate Topologies

• And-Or-Invert (AOI)

– Sum of products boolean function

– Parallel branches of series connected NMOS

• Or-And-Invert (OAI)

– Product of sums boolean function

– Series connection of sets of parallel NMOS
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B

Graph-Based Dual Network

• Use graph theory to help design gates

– Mostly implemented in CAD tools

• Draw network for PUN or PDN

– Circuit nodes are vertices

– Transistors are edges

A

F

gnd

A B
F
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Graph-Based Dual Network (2)

• To derive dual network:

– Create new node in each enclosed region of graph

– Draw new edge intersecting each original edge

– Edge is controlled by inverted input

– Convert to layout using consistent Euler paths

A B

A B A

B
F

F

gnd

Fvdd
n1

n1
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Propagation Delay Analysis - The Switch Model

VDD
VDDVDD

CL

F CL

CL

F

F

Rp
Rp Rp Rp

Rp

Rn

Rn

Rn Rn Rn

A
A

A

A
A

A

B B

B

B

(a) Inverter (b) 2-input NAND (c) 2-input NOR

tp = 0.69 Ron CL

(assuming that CL dominates!)

= 
RON
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Switch Level Model

• Model transistors as switches with 
series resistance

• Resistance Ron = average resistance 
for a transition

• Capacitance CL = average load 
capacitance for a transition (same as 
we analyzed for transient inverter 
delays)

RN

RP

A

A

CL
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What is the Value of Ron?
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Switch Level Model Delays
Delay estimation using switch-level 

model (for general RC circuit):
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Switch Level Model RC Delays

• For fall delay tphl, V0=VDD, V1=VDD/2

Lpplh

Lnphl

p
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Standard RC-delay 
equations from literature
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Numerical Examples

• Example resistances for 1.2 μm CMOS 
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Analysis of Propagation Delay
VDD

CL

F

Rp Rp

Rn

Rn

A

A B

B

2-input NAND

1. Assume Rn=Rp= resistance of minimum
 sized NMOS inverter

2. Determine “Worst Case Input” transition
(Delay depends on input values)

3. Example: tpLH for 2input NAND
- Worst case when only ONE PMOS Pulls

up the output node
- For 2 PMOS devices in parallel, the 

resistance is lower

4. Example: tpHL for 2input NAND
- Worst case : TWO NMOS in series

tpLH = 0.69RpCL

tpHL = 0.69(2Rn)CL
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Design for Worst Case
VDD

CL

F

A

A B

B

2

2

1 1

VDD

A
B

C

D

D
A

B C
1

2

22

2

2
4

4

F

Here it is assumed that Rp = Rn 

NAND Gate Complex Gate
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Fan-In and Fan-Out 
VDD

A B

A

B

C

D

C D

Fan-Out
Number of logic gates 
connected to output
(2 FET gate capacitances 
per fan-out)

Fan-In 
Number of logical inputs
Quadratic delay term due to:
1.Resistance increasing
2.Capacitance increasing
for tpHL (series NMOS)

tp proportional to a1FI + a2FI2 + a3FO
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Fast Complex Gates - Design Techniques

• Increase Transistor Sizing: 
Works as long as Fan-out capacitance 
dominates self capacitance (S/D cap increases 
with increased width)

• Progressive Sizing:

CL

In1

InN

In3

In2

Out

C1

C2

C3

M 1 > M 2 > M 3 > MN

M1

M2

M3

MN

Distributed RC-line

Can Reduce Delay by more 
than 30%!
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In1

In3

In2

C1

C2

CL

M1

M2

M3

In3

In1

In2

C3

C2

CL

M3

M2

M1

(a) (b)

• Transistor Ordering

critical pathcritical path
Place last arriving input closest to output node

Fast Complex Gates - Design Techniques (2)
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Fast Complex Gates - Design Techniques (3)

• Improved Logic Design

Note Fan-Out capacitance is the same, but Fan-In 
resistance lower for input gates (fewer series FETs)
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Fast Complex Gates - Design Techniques (4)
• Buffering: Isolate Fan-in from Fan-out

CL
CL

Keeps high fan-in resistance isolated from large 
capacitive load CL
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4 Input NAND Gate

In3

In1

In2

In4

In1 In2 In3 In4

VDD

Out

In1In2In3 In4

VDD

GND

Out
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Capacitances in a 4 input NAND Gate

Note that the value of Cload for calculating 
propagation delay depends on which capacitances 
need to be discharged or charged when the critical 
signal arrives.

Example: In1 = In3 = In4 = 1. In2 = 0. In2 switches from low 
to high. Hence, Nodes 3 and 4 are already discharged to 
ground. In order for Vout to go from high to low… Vout
node and node 2 must be discharged.
CL = 
Cgd5+Cgd7+Cgd8+2Cgd6(Miller)+Cdb5+Cdb6+Cdb7+Cd
b8 +Cgd1+ Cdb1+ Cgs1+ Csb1+ 2Cgd2+ Cdb2+ Cw

VDD

Cdb1

Csb1

Cgd
1

Cgs1

In1

Cdb2

Csb2

Cgd
2

Cgs2

In2

Cdb3

Csb3

Cgd
3

Cgs3

In3

Cdb4

Csb4

Cgd
4

Cgs4

In4

Csb5

Cdb5

Cgs5

Cgd5

In1

Csb6

Cdb6

Cgs6

Cgd6

In2
Csb7

Cdb7

Cgs7

Cgd7

In3

Csb8

Cdb8

Cgs8

Cgd8

In4

Vout

2

3

4
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Next Topic: Sequential Logic 

• Basic sequential circuits in CMOS

– RS latches, transparent latches, flip-flops

– Alternative sequential element topologies

– Pipelining
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