EEC 118 Lecture #16: Manufacturability

Rajeevan Amirtharajah University of California, Davis

Outline

- Finish interconnect discussion
- Manufacturability: Rabaey G, H (Kang & Leblebici, 14)

Design for Manufacturability

- For class projects or university research, goal is a single working circuit or small number of prototypes
 - Similar scale for industrial research projects
- Production goal is usually thousands to 100s of millions of working (or at least marketable) parts
 - Must evaluate circuit designs over a range of parameter variations to ensure correct functionality, performance
- <u>Design for Manufacturability</u> or <u>Statistical Circuit</u> <u>Design</u> encompasses a variety of techniques
 - Yield estimation and maximization, worst-case analysis, etc.

Circuit Parameter Variations

- All circuit parameters vary some amount due to variations in process, lithography, or environment
 - Geometric parameters: transistor W and L
 - Device parameters: V_T , t_{ox} , μ
 - Interconnect parameters: R, C
 - Operating conditions: V_{DD}, T
- Variations occur both spatially and temporally
 - Circuit-to-circuit on same die (spatial)
 - Die-to-die on same wafer (spatial)
 - Wafer-to-wafer in same fab (temporal)

• Example: transistor width $W = W^0 + \Delta W$

Designer controls _

Random

Increasing

variation

CMOS Inverter Example

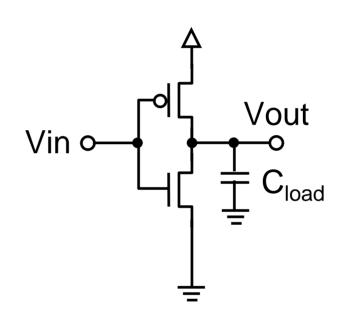
For both NMOS and PMOS:

$$- W = W^0 + \Delta W$$

$$-L = L^0 + \Delta L$$

$$- V_T = V_T^0 + \Delta V_T$$

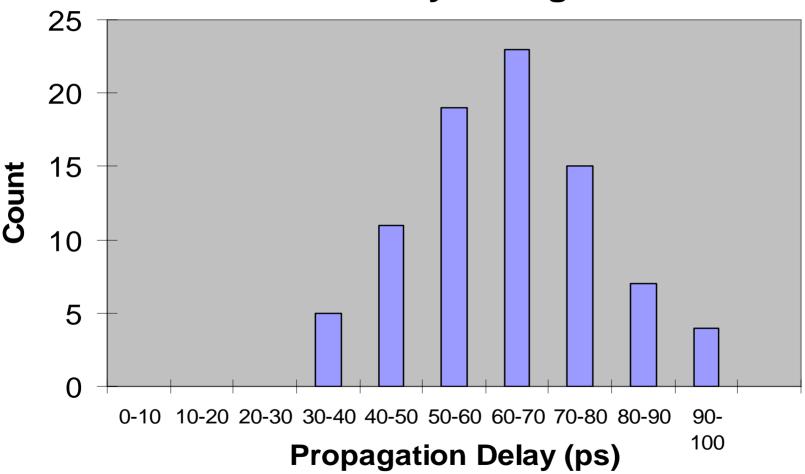
$$- k' = k'^0 + \Delta k'$$


• For capacitor:

$$-C_{load} = C^0 + \Delta C$$

For entire circuit:

$$-T = T^0 + \Delta T$$


$$- V_{DD} = V_{DD}^{0} + \Delta V_{DD}$$

All these parameters affect circuit performance!

Performance Variation Example

Inverter Delay Histogram

Delay variations with parameters, loading, V_{DD}, and T

Yield Estimation and Maximization

- Parametric <u>Yield</u>: ratio of total acceptable circuits to total manufactured circuits
 - Design for manufacturability aims to maximize yield (and \$\$)
- Yield statistics are usually complicated since circuit performance is complex function of parameters
- Numerous methods for estimating and maximizing yield
 - Response surface models (RSM): compact analytical model fit to circuit simulations using Design of Experiments
 - Direct Monte Carlo circuit simulations or the RSM can be used to estimate yields
 - Designer controlled parameters then adjusted to maximize yield estimates

Worst-Case Design 1

- Given range of variations for process, voltage, temperature identify worst (best) cases for performance parameter of interest
 - Process corner models from fab define limits of device performance
 - Labeled by NMOS-PMOS pairs, e.g. Typical NMOS-Typical PMOS (TT)
 - Usual additional corners: Fast NMOS-Fast PMOS (FF),
 Slow NMOS-Slow PMOS (SS), Fast NMOS-Slow PMOS (FS),
 Slow NMOS-Fast PMOS (SF)
 - Usual voltage corners: Nominal V_{DD} +/- 10%
 - Temperature range: 0 100 °C

Worst-Case Design 2

- Identify worst (best) cases for performance parameter of interest
- Typical Speed Corner
 - Typical NMOS-Typical PMOS (TT), nominal VDD, room temperature 27 °C

Slow Speed Corner

 Slow NMOS-Slow PMOS (SS), 0.9 x VDD, maximum temperature 100 °C

Fast Speed Corner

 Fast NMOS-Fast PMOS (FF), 1.1 x VDD, minimum temperature 0 °C

Summary

- Design for manufacturability converts a prototype into a "real" design for large-scale production
 - Statistical models of process, device and interconnect parameters, and operating conditions used to estimate and maximize yield (and profits)
 - Analysis is difficult because of complexity, usually numerical models and many simulations required
- Variability trend is worsening as processes shrink
 - For example, locations of individual dopant atoms can affect transistor performance
- Statistical circuit design is becoming as important as performance and power!

Next Topic: Future Directions & Final Review

- Future directions in CMOS digital circuits
- Alternative logic technologies to CMOS
- Final exam review