EEC 118 Lecture #15: Interconnect

Rajeevan Amirtharajah
University of California, Davis
Outline

• Review and Finish: Low Power Design
• Interconnect Effects: Rabaey Ch. 4 and Ch. 9
 (Kang & Leblebici, 6.5-6.6)
Interconnect Modeling

• Early days of CMOS, wires could be treated as ideal for most digital applications, not so anymore!

• On-chip wires have resistance, capacitance, and inductance
 – Similar to MOSFET charging, energy depends solely on capacitance
 – Resistance might impact low power adiabatic charging, static current dissipation, speed
 – Ignore inductance for all but highest speed designs

• Interconnect modeling is whole field of research itself!
Interconnect Models: Regions of Applicability

• For highest speed applications, wire must be treated as a transmission line
 – Includes distributed series resistance, inductance, capacitance, and shunt conductance (RLGC)

• Many applications it is sufficient to use lumped capacitance (C) or distributed series resistance-capacitance model (RC)

• Valid model depends on ratio of rise/fall times to time-of-flight along wire
 – l: wire length
 – v: propagation velocity (speed of light)
 – l/v: time-of-flight on wire
Interconnect Models: Regions of Applicability

• Transmission line modeling (inductance significant):

\[t_{\text{rise}} (t_{\text{fall}}) < 2.5 \times (l / v) \]

• Either transmission line or lumped modeling:

\[2.5 \times (l / v) < t_{\text{rise}} (t_{\text{fall}}) < 5 \times (l / v) \]

• Lumped modeling:

\[t_{\text{rise}} (t_{\text{fall}}) > 5 \times (l / v) \]
Resistance

- Resistance proportional to length and inversely proportional to cross section

- Depends on material constant resistivity ρ (\(\Omega\)-m)

$$R = \frac{\rho L}{A} = \frac{\rho L}{tW} = R_{sq} \frac{L}{W} \quad R_{sq} = \frac{\rho}{t}$$
Parallel-Plate Capacitance

- Width large compared to dielectric thickness, height small compared to width: E field lines orthogonal to substrate

\[C = \frac{\varepsilon_r}{h} WL \]
Fringing Field Capacitance

• When height comparable to width, must account for fringing field component as well
Total Capacitance Model

- When height comparable to width, must account for fringing field component as well
- Model as a cylindrical conductor above substrate

![Diagram showing a cylindrical conductor above a substrate with annotations for height (h), width (W), and thickness (t).]
Total Capacitance Model

• Total capacitance per unit length is parallel-plate (area) term plus fringing-field term:

\[
c = C_{pp} + C_{fringe} = \frac{\varepsilon_r}{h} \left(W - \frac{t}{2} \right) + \frac{2\pi\varepsilon_r}{\log(2h/t + 1)}
\]

• Model is simple and works fairly well (Rabaey, 2nd ed.)
 – More sophisticated numerical models also available

• Process models often give both area and fringing (also known as sidewall) capacitance numbers per unit length of wire for each interconnect layer
Alternative Total Capacitance Models

- For wide lines \((w \geq t/2)\) Kang & Leblebici Eq. 6.53:

\[
C = \frac{\varepsilon_r}{h} \left(W - \frac{t}{2} \right) + \frac{2\pi\varepsilon_r}{\ln \left(1 + \frac{2h}{t} + \sqrt{\frac{2h}{t} \left(\frac{2h}{t} + 2 \right)} \right)}
\]

- For narrow lines \((w \leq t/2)\) Kang & Leblebici Eq. 6.54:

\[
C = \frac{\varepsilon_r W}{h} + \frac{\pi\varepsilon_r \left(1 - 0.0543 \frac{t}{2h} \right)}{\ln \left(1 + \frac{2h}{t} + \sqrt{\frac{2h}{t} \left(\frac{2h}{t} + 2 \right)} \right)} + 1.47\varepsilon_r
\]

Amirtharajah, EEC 118 Spring 2011
Capacitive Coupling

- Fringing fields can terminate on adjacent conductors as well as substrate
- Mutual capacitance between wires implies crosstalk, affects data dependency of power
Miller Capacitance

• Amount of charge moved onto mutual capacitance depends on switching of surrounding wires

• When adjacent wires move in opposite direction, capacitance is effectively doubled (Miller effect)

\[\Delta Q = C_m (V_f - V_i) \]
\[= C_m (V_{DD} - (-V_{DD})) \]
\[= 2C_m V_{DD} \]
Data Dependent Switched Capacitance 1

- When adjacent wires move in same direction, mutual capacitance is effectively eliminated

\[A \uparrow B \uparrow C \uparrow \; \text{OR} \; A \downarrow B \downarrow C \downarrow \quad C_{\text{eff}} = 0 \]

\[A \downarrow B \uparrow C \downarrow \; \text{OR} \; A \uparrow B \downarrow C \uparrow \quad C_{\text{eff}} = 4C_m \]

\[A \downarrow B \uparrow C \uparrow \; \text{OR} \; A \downarrow B \downarrow C \uparrow \quad C_{\text{eff}} = 2C_m \]

Amirtharajah, EEC 118 Spring 2011
Data Dependent Switched Capacitance 2

- When adjacent wires are static, mutual capacitance is effectively to ground

\[
\begin{align*}
0 \uparrow 0 & \quad \text{OR} \quad 1 \downarrow 1 \\
1 \uparrow 0 & \quad \text{OR} \quad 0 \downarrow 1 \\
0 \uparrow 1 & \quad \text{OR} \quad 1 \downarrow 0 \\
1 \uparrow 1 & \quad \text{OR} \quad 0 \downarrow 0
\end{align*}
\]

\[C_{\text{eff}} = 2C_m\]

- Remember: it is the \textit{charging} of capacitance where we account for energy from supply, \textbf{not} discharging
Lumped RC Model

- Simplest model used to represent the resistive and capacitive interconnect parasitics.
- Propagation delay (same as FET switch model):
 \[t_{PLH} \approx 0.69RC \]
• Significantly improves accuracy of transient behavior over the lumped RC model

• Useful if simulation time is a bottleneck, much simpler than fully distributed model
• Elmore delay approximation for RC ladder network:

$$t_{DN} = \frac{RC}{2}$$

as $N \to \infty$
Repeater Insertion to Reduce Wire Delay

- Insert inverters along long wires at regular intervals
- Breaks up resistance and capacitance, reducing delay dramatically
Inductance

• Inductance can be determined by direct application of definition:

\[\Delta V = L \frac{di}{dt} \]

• Can compute inductance directly from wire geometry and surrounding environment using field solver

• Simpler approach relates capacitance per length \(c \) with inductance per length \(l \):

\[cl = \varepsilon \mu \]

 – Assumes uniform or “average” dielectric

Amirtharajah, EEC 118 Spring 2011
Summary

• Many important effects to consider in interconnect design
 – Resistance, capacitance, inductance can all affect signal performance
 – Long rise/fall time signals, only resistance and capacitance needs to be considered

• Several models useful for RC interconnect delay analysis
 – Simple lumped (1 R, 1 C) model: easy to analyze and/or simulate, will be pessimistic
 – T-model (2 \(R_{eq} = R/2, 1 \) C): more accurate than lumped
 – Distributed model (N \(R_{eq} = R/N, N C_{eq} = C/N \)): most accurate, use Elmore delay approximation for hand analysis
Next Topic: Design for Manufacturability

- Parameter variations in CMOS digital circuits
- Yield maximization and worst-case design