EEC 118 Lecture #10: Dynamic Logic

Rajeevan Amirtharajah University of California, Davis

> Jeff Parkhurst Intel Corporation

Announcements

• Complete Lab 4 this week

Outline

- Today: Alternative MOS Logic Styles
- Dynamic MOS Logic Circuits: Rabaey 6.3 (Kang & Leblebici, 9.4-9.6)

Review: Transmission Gate XOR

• If S = 0, F = A and when S = 1, F = -A

Review: Transmission Gate Multiplexer

Dynamic CMOS

• Operation

- Clk low during Pre-charge
 - Mp is on while Mn is off
 - Output charged to Vdd
- Clk high during evaluate
 - Mn is on while Mp is off
 - Output pulled down according to PDN function
- PDN design same as static CMOS

Dynamic CMOS Tradeoffs

• Advantages:

- Faster why?
 - Reduced input load
 - No switching contention
- Less layout area

• Disadvantages:

- Multiple stage issues
- Charge leakage
- Charge sharing
- Capacitive coupling
- Cannot be cascaded
- Complicated timing/clocking
- Higher power
- Lower noise margins
- Does not scale well with process

Multiple Stage Issue: Output Discharge Race

• During pre-charge stage, inputs to second gate are all high: Out 2 could discharge before Out 1 discharges Amirtharajah/Parkhurst, EEC 118 Spring 2011

Cascading Multiple Stages

- During pre-charge stage, inputs to second gate are all high
 - At the beginning of evaluate stage, Out 2 is discharged.
 - Out 1 goes through its evaluation stage concurrently and goes low
 - <u>Hence out 2 was supposed to be high, but already</u> <u>discharged.</u>
 - Dynamic logic driven by the same clock cannot be cascaded directly

- Output is floating after clk = '1' if inputs are '0'
- If upper transistors in a stack switch, the intermediate and output node voltages will be equalized, possibly leading to a drop in the output voltage = noise
- Final output (initial charge distributed over both capacitors):

$$V = (C_1 V_1 + C_2 V_2) / (C_1 + C_2)$$

Charge Leakage & Capacitive Coupling

- Output is floating after clk = '1' if inputs are '0'
- Since the current is not 0 when transistors are in cutoff, current can leak charge away from the output when all inputs are '0'
- Changes in input signals couple to the output and intermediate nodes, also resulting in voltage drops

Noise Solutions

- Charge sharing:
 - Ensure the output capacitance is large enough such that the voltage drop is minimal
 - Precharge internal stack nodes to V_{DD}
 - Pre-discharging internal stack nodes can increase performance, but worsens noise
- Charge leakage/sharing and capacitive coupling:
 - Add a keeper PMOS (weak P pullup) increased evaluation contention

Domino Logic

Domino Logic

- Add an inverter between dynamic gates
 - Inverter drives the gate's fanout increased performance
- Sometimes the inverter is replaced with a more complex static CMOS gate
 - Incorporates more logic per stage to improve speed
- Static CMOS gate improves overall circuit dynamic noise margins

Cascading Domino

- For gates with all inputs coming from other domino gates, the bottom NMOS transistor can be eliminated
 - Why? All inputs will be '0' during precharge and can only transition from '0' to '1' during evaluate due to inverter between stages...
 - Results in increased performance due to decreased stack height
 - Precharge now depends on input precharge time

- Power depends upon switching activity
 - Switching activity depends upon the probability of a '1' input

$$P_{avg} = \frac{1}{T} C_{load} V_{DD}^2 = C_{load} V_{DD}^2 f$$

- Effective capacitance C_{load} is doubled when the gate evaluates because the gate must later precharge
- Frequency must be multiplied by the probability that an evaluation will occur
- Power is usually higher for domino logic except when it replaces prior logic with very high activity factors

Bottom Line

- Tradeoff between performance and power exists
- Many things can go wrong from a design standpoint (high risk)
 - Charge sharing, noise, leakage currents, race conditions
- Debugging challenge, especially in deep submicron
 - Leakage currents put lower bound on clock frequency for testing
- Best to use dynamic logic <u>only</u> when necessary
 - High performance circuits such as microprocessor critical paths

NORA Logic Gate

NORA Logic

- Solves problem of cascading dynamic gates, but is vulnerable to noise
 - Alternate P-dynamic and N-dynamic stages
 - Both clk and clk required
 - Lose some of the speed benefits due to added PUNs

Zipper Logic

- Like NORA logic...but,
 - PMOS precharge and NMOS pre-discharge weakly on during evaluation stage...

Variations on the Domino Theme

Multiple-Output Domino

- Exploit situation when certain outputs are subsets of other outputs to reduce area
- Precharge intermediate nodes in PDN and follow with inverters to drive other N-block dynamic gates

Compound Domino

- Use complex static CMOS gates (NANDs, NORs) on outputs of multiple dynamic gates in parallel
- Replaces large fanin domino gates with lower fanin gates
- Capacitive coupling from static gate outputs to dynamic gate outputs an issue

Multiple Output Domino CMOS Logic

Compound Domino CMOS Logic

Next Topic: Arithmetic

- Computing arithmetic functions with CMOS logic
 - Half adder and full adder circuits
 - Circuit architectures for addition
 - Array multipliers