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Permissions to Use Conditions & Acknowledgment

• Permission is granted to copy and distribute this slide 
set for educational purposes only, provided that the 
complete bibliographic citation and following credit line 
is included: "Copyright 2002 J. Rabaey et al." 
Permission is granted to alter and distribute this 
material provided that the following credit line is 
included: "Adapted from (complete bibliographic 
citation). Copyright 2002 J. Rabaey et al."
This material may not be copied or distributed for 
commercial purposes without express written 
permission of the copyright holders. 

• Slides 13-17 Adapted from CSE477 VLSI Digital Circuits 
Lecture Slides by Vijay Narayanan and Mary Jane Irwin, 
Penn State University
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Outline

• Administrative Details

• Survey of Digital IC Technology

• MOS Fabrication

• MOSFET Overview
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Personnel

• Prof. Raj Amirtharajah (Instructor)
Office: 3173 Kemper Hall
Email: ramirtha@ece.ucdavis.edu
Please put EEC 118 in email subject line.
Office Hours: F 2 - 3 PM or by appointment.

• Travis Kleeburg
Email: tjkleeburg@ucdavis.edu
Office Hours: (TBD)

• Erin Fong
Email: egfong@ucdavis.edu
Office Hours: (TBD)

• Labs
Tuesdays 6 PM – 9 PM 2157/2161 Kemper
Wednesdays 5 PM – 8 PM 2157/2161 Kemper
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Course Materials

• Textbook
Digital Integrated Circuits (2nd ed.) 
by J. Rabaey, A. Chandrakasan, and B. Nikolic

• Suggested References
CMOS Digital Integrated Circuits (3rd ed.) Kang and Leblebici
CMOS VLSI Design (3rd ed.) Weste, Harris

• Handouts
Labs, lab report cover sheets, slides, and lecture notes available 

on course web page in PDF format.
• Web Page

http://www.ece.ucdavis.edu/~ramirtha/EEC118/S11/S11.html
Linked from SmartSite
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Grading

• Letter

• A: 100 - 90%

• B: 90 - 80%
• C: 80 - 70%
• D: 70 - 60%
• F: below 60%

• Expect class average to be around B- / C+
• Curving will only help you
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Weighting

• Labs 15%
• Design Project 15%
• Weekly Homework 5%

Scale for each problem: 0 = poor effort, 1 = close, but 
fundamental problem, 2 = correct

• Quizzes 10%
Four throughout the quarter (approx. every other week), 

lowest score dropped (April 11, April 25, May 18, May 25)
• Midterm 20%

Monday, May 2, in class
• Final 35%

Monday, June 6, 8:00 - 10:00 AM
Cumulative, but emphasizes material after midterm
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Labs and CAD Software Usage

• Need to know/learn Cadence/Spectre – Circuit 
Simulation

• Use same breadboard as EEC 180A

• No unsupervised lab hours!

– TA or instructor must be present for your safety 
and security of the lab equipment

– Extra lab hours will be added only in unusual 
circumstances
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Education Demand for Circuit Design
• Industry needs circuit designers

– Not just logic designers
• Must understand operation at transistor level

– Not just digital designers
• Must understand analog effects

– Not just analog designers
• Must be able to comprehend Deep Sub-Micron 

(DSM) effects (<0.13um)
• Fundamental circuit knowledge critical

– Similar techniques for bipolar transistors, NMOS (even 
relays and vacuum tubes!)

– Must be able to exploit nanoscale devices in future
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Education Demand for System Design
• Industry needs system designers

– Need to understand system implications of your 
design

• Power Delivery, Clock Loading – What do you need
– Need to design from the system point of view

• Communication protocol – how to effectively talk 
with other blocks

• What should be added into your block to meet 
system design requirements(i.e. comprehend soft 
block methodology for optimization of area, 
interconnect, etc.)

You must operate at both levels!



Amirtharajah/Parkhurst, EEC 118 Spring 2011 11

Historical Background

Graph shows the growing complexity of designing 
integrated circuits
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Memory, Processors and Graphics
• Used to be that memory and processors were the 

two main design drivers.

http://turquoise.wpi.edu/webcourse/ch01/ch01.html
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Memory, Processors and Graphics

• We now have graphics also driving integration
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From ISPD 1999 Keynote Speech by Chris Malachowsky of NVIDIA
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Hybrid to Monolithic Trend

• We continue to integrate multiple functions on a 
single chip
– Mixture of Analog, Radio Frequency (RF), Digital

– Graphics/Motherboard chipset an example of this

• Cost and Performance driving market
– Higher performance achieved on chip than off chip

– Lower cost due to a single die versus multi-chip 
design

– Saves on packaging, total area by eliminating 
redundant functions

• System-on-a-Chip (SOC) concept
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What are the issues facing the industry ?
• Growth of transistors is exponential
• Growth of operating frequency is (was?) exponential

– Reaching a limit due to power dissipation (see current 
generation Pentiums and Itaniums)

• Complexity continues to grow
– Trend is toward multiple cores on one chip
– Design teams cannot keep up with trend

• Power dissipation a concern
– Power delivery, thermal issues, long term reliability

• Manufacturing providing us with lots of transistors
– How do we use them effectively (besides large caches)?
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Why worry about power? Power Dissipation
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Why worry about power? Chip Power Density
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Chip Power Density Distribution

• Power density is not uniformly distributed across the chip
• Silicon not the best thermal conductor (isotopically pure 

diamond is)
• Max junction temperature is determined by hot-spots

– Impact on packaging, cooling

0

50

100

150

200

250

He
at

 F
lu

x 
(W

/c
m

2)

Power Map

40

50

60

70

80

90

100

110

Te
m

pe
ra

tu
re

 (C
)

On-Die Temperature



Amirtharajah/Parkhurst, EEC 118 Spring 2011 19

Recent Battery Scaling and Future Trends

• Battery energy density increasing 8% per year, demand 
increasing 24% per year (Economist,  January 6, 2005)

Battery
(40+ lbs)
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Why worry about power? Standby Power

Drain leakage will increase as VT decreases to maintain noise 
margins and meet frequency demands, leading to excessive 
battery draining standby power consumption.
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Year 2002 2005 2008 2011 2014
Power supply Vdd
(V)

1.5 1.2 0.9 0.7 0.6

Threshold VT (V) 0.4 0.4 0.35 0.3 0.25

…and phones leaky!
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Industrial Plants and Power Line Monitoring
(courtesy ABB)

Operating Room of the Future
(courtesy John Guttag)

Target Tracking & Detection
(Courtesy of ARL) Location Awareness

(Courtesy of Mark Smith, HP)

Websign

NASA/JPL sensorwebs

Emerging Microsensor Applications
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Chip Design Styles
• Field-Programmable Gate Array (FPGA)

– Regular structure. Not all transistors are usable.
– Programmed via software (configurable wiring)

• Gate Array
– Regular structure. Higher usage of transistors than FPGA
– Two step manufacturing process. 

• Diffusion and poly initially. Design must be fairly stable
• Metal layers fabricated once design is finalized

• Cell based design
– All transistors used (may have spares to fill in area)
– Each cell is fixed height so that they can be placed in rows

• Full Custom
– Highest level of compactness and performance
– Manually intensive. Not conducive to revision (ECO)
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Logic Design Families
• Static CMOS Logic

– Good power delay product (energy)
– Good noise margin
– Not as fast as dynamic

• Dynamic Logic
– Very fast but inefficient in use of power
– Domino, CPL, OPL

• Pass Transistor Logic
– Poor noise margin
– Sometimes static power dissipation
– Less area than static CMOS
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Design Parameters

• Reliability (Not dealt with when relating to layout)

– Factors that dictate reliable operation of the circuit
• Electromigration, thermal issues, hot electrons, 

noise margins

• Performance (Dealt with in this class)

– Not just measured in clock speed. Power-Delay 
Product (PDP, equivalent to energy) is a better 
measure

• Area (Not dealt with when relating to layout)

– Directly affects cost
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Current State of the Art

• Intel Core® @ 4 GHz (1 or 2 cores/chip going to 4+)

– 800 - 1066 MHz system bus

– AGP 8x graphics (533 MHz bus)

– Memory bus at 533 MHz (DDR)

• Complex Designs demand resources

– Design teams resource limited due to logistics and cost

– Cannot afford to miss issues due to cost of product 
recall

– Emphasis on pre-silicon verification as opposed to post 
silicon testing
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One
centimeter

Modern Microprocessor
(> 100,000,000 transistors)

2003
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Modern Multicore
Microprocessor

(790,000,000 transistors)
2007IBM POWER6

Reick et al., Hot Chips 19, 2007
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Moore’s Law
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Expectations
• You should already know

– Solid State – (i.e. PN junctions, semiconductor 
physics, ..)

• What we will cover
– MOS Transistors Fabrication and Equations
– CMOS logic at the transistor level
– Sequential logic
– Memory
– Arithmetic Circuits
– Interconnect

• Framework
– Course to use PowerPoint for the most part
– Bring PowerPoint slides to class and write notes on 

them
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• Rabaey Ch. 3 (Kang & Leblebici Ch. 3)
• Two transistor types (analogous to bipolar NPN, PNP)

– NMOS: p-type substrate, n+ source/drain, electrons are 
charge carriers

– PMOS: n-type substrate, p+ source/drain, holes are 
charge carriers 

MOS Transistor Types

source drain

P-substrate

N+ N+

NMOS

source drain

N-substrate

P+ P+

PMOS

gate gate

bulk (substrate)bulk (substrate)
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MOS Transistor Symbols
NMOS PMOSD
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• All symbols appear in literature

– Symbols with arrows are conventional in analog papers

– PMOS with a bubble on the gate is conventional in digital 
circuits papers

• Sometimes bulk terminal is ignored – implicitly 
connected to supply:

• Unlike physical bipolar devices, source and drain are 
usually symmetric

Note on MOS Transistor Symbols

NMOS PMOS
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MOS Transistor Structure

L

W
tox

xd

• Important transistor physical characteristics

– Channel length L = LD – 2xd (K&L L = Lgate – 2LD)

– Channel width W

– Thickness of oxide tox
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MOS Transistor Regions of Operation

• Three main regions of operation

• Cutoff: VGS < VT
No inversion layer formed, drain and source are 
isolated by depleted channel.  IDS ≈ 0

• Linear (Triode, Ohmic): VGS > VT, VDS < VGS-VT
Inversion layer connects drain and source.
Current is almost linear with VDS (like a resistor)

• Saturation: VGS > VT, VDS ≥ VGS-VT
Channel is “pinched-off”.  Current saturates 
(becomes independent of VDS, to first order).
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Fabrication Process
• Substrate is grown and then cut

– Round silicon wafers are used

– Purity emphasized to prevent impurities from 
affecting operation (99.9999% pure)

• Each layer deposited separately

• Some layers used as masks for later layers

• Planar process is important

– Requires minimum percent usage of metal to 
ensure flatness
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Silicon Substrate Manufacturing
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Building a Golf Course with Similar Process

• Plane drops materials from the air
– Sand, then dirt, then grass seeds, then trees
– Certain masks applied during process to prevent material 

from hitting particular areas
– For instance: After Sand, mask placed over areas where 

sand trap will exist. Mask later taken off at end of process 
to reveal sand trap.
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Fabrication: Patterning of SiO2 Step I

• Grow SiO2 on Si by exposing to O2
– High temperature accelerates this process

• Cover surface with photoresist (PR)
– Sensitive to UV light (wavelength determines feature size)
– Positive PR becomes soluble after exposure
– Negative PR becomes insoluble after exposure
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Fabrication: Patterning of SiO2 Step II

• Exposed PR removed with a solvent

• SiO2 removed by etching (HF – hydrofluoric acid)

• Remaining PR removed with another solvent
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NMOS Transistor Fabrication

• Thick field oxide grown

• Field oxide etched to create area for transistor

• Gate oxide (high quality) grown
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NMOS Transistor Fabrication

• Polysilicon deposited (doped to reduce resistance R)
• Polysilicon etched to form gate
• Gate oxide etched from source and drain

– Self-aligned process because source/drain aligned by 
gate

• Si doped with donors to create n+ regions
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NMOS Transistor Fabrication

• Insulating SiO2 grown to cover surface/gate
• Source/Drain regions opened
• Aluminum evaporated to cover surface
• Aluminum etched to form metal1 interconnects
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Inverter Fabrication: Layout

• Inverter
– Logic symbol

– CMOS inverter circuit

– CMOS inverter layout (top view of lithographic 
masks)
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Inverter Fabrication: NWELL and Oxides

• N-wells created

• Thick field oxide grown surrounding active 
regions

• Thin gate oxide grown over active regions
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Inverter Fabrication: Polysilicon

• Polysilicon deposited

– Chemical vapor deposition (Places the Poly)

– Dry plasma etch (Removes unwanted Poly)



Amirtharajah/Parkhurst, EEC 118 Spring 2011 46

Inverter Fabrication: Diffusions

• N+ and P+ regions created using two masks

– Source/Drain regions

– Self-aligned process since gate is already fabricated

– Substrate contacts
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Inverter Fabrication

• Insulating SiO2 deposited using chemical vapor 
deposition (CVD)

• Source/Drain/Substrate contacts exposed
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Inverter Fabrication

• Metal (Al, Cu) deposited using evaporation

• Metal patterned by etching

• Copper is current metal of choice due to low resistivity
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NWELL MOS Process

• MOS transistors use 
PN junctions to 
isolate different 
regions and prevent 
current flow.

• NWELL is used in P-
substrate so that 
PMOS transistors are 
isolated and don’t 
share currents. 
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More Complex Processes
• Twin Well CMOS Process

– Can help to avoid body effect
– Allows for Vt and channel transconductance tuning
– Requires extra processing steps (more costly)
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Silicon-On-Insulator (SOI) Process

• Both transistors built on insulating substrate

– Allows for tight compaction of design area

– Some of the parasitic capacitances seen in bulk CMOS 
disappear

– Wafer cost is high (IBM produces SOI, Intel doesn’t)
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Accounting for VDSM Effects

• VDSM = Very Deep Sub Micron

– Effects significant below 0.25 μm (0.18 μm, 130 nm, 90 
nm, 65 nm, 45 nm)

• Compensation made at the mask level

– OPC – Optical Proximity Correction

– Occurs when different mask layers don’t align properly

– Test structures are used to characterize the process

– Ability to adapt depends on the consistency of the error 
from process run to process run
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Accounting for VDSM Effects: OPC



Amirtharajah/Parkhurst, EEC 118 Spring 2011 54

Accounting for VDSM Effects: Example

• Example of 2D OPC effects: rounded edges, 
narrowed lines

Uncorrected Corrected
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Compensating for VDSM Effects: Masks

Layout Mask Silicon
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Compensating for VDSM Effects: CAD
• Flow to compensate is transparent to layout designer
• Layout design proceeds as normal

Mentor Graphics Flow
http://www.mentor.com/calibre/datasheets/opc/html/
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References

• “Design of VLSI Systems”. A web based course 
located at: http://turquoise.wpi.edu/webcourse/

• “Simplified Rule Generation for Automated Rules-
Based Optical Enhancement”, Otto et. al. On web 
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dex.html

• Mark Anders and Jim Schantz of Intel Corporation

• Jan Rabaey, Lecture notes from his book “Digital 
Integrated Circuits, A Design Perspective”
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MOSFET Drain Current Overview

Linear (Triode, Ohmic):

“Classical” MOSFET model, will discuss deep submicron 
modifications as necessary (Rabaey, Eqs. 3.25, 3.29)
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A Fourth Region: Subthreshold

Subthreshold:
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• Sometimes called “weak inversion” region
• When VGS near VT, drain current has an exponential 

dependence on gate to source voltage
– Similar to a bipolar device

• Not typically used in digital circuits
– Sometimes used in very low power digital applications
– Often used in low power analog circuits, e.g. quartz 

watches
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Next Topic: MOSFET Details 

• MOS Structure

– Derivation of threshold voltage, drain current equations

• MOSFET Scaling

• MOSFET Capacitances
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