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Personnel

 Prof. Raj Amirtharajah (Instructor)

Office: 3173 Kemper Hall

Email: ramirtha@ece.ucdavis.edu

Please put EEC 118 in email subject line.
Office Hours: F 2 - 3 PM or by appointment.

e Travis Kleeburg

Email: tikleeburg@ucdavis.edu
Office Hours: (TBD)

 Erin Fong

Email: egfong@ucdavis.edu
Office Hours: (TBD)

e Labs
Tuesdays 6 PM — 9 PM 2157/2161 Kemper
Wednesdays 5 PM — 8 PM 2157/2161 Kemper
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Course Materials

Textbook

Digital Integrated Circuits (2" ed.)
by J. Rabaey, A. Chandrakasan, and B. Nikolic

Suggested References

CMOS Digital Integrated Circuits (3" ed.) Kang and Leblebici
CMOS VLSI Design (3" ed.) Weste, Harris

Handouts

Labs, lab report cover sheets, slides, and lecture notes available
on course web page in PDF format.

Web Page

http://www.ece.ucdavis.edu/~ramirtha/EEC118/S11/S11.html
Linked from SmartSite
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Grading

e Letter
 A:100 - 90%
« B: 90 - 80%

e C.80-70%

e D: 70 - 60%

e F: below 60%

« EXxpect class average to be around B-/ C+
e Curving will only help you
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Weighting

Labs 15%
Design Project 15%
Weekly Homework 5%

Scale for each problem: 0 = poor effort, 1 = close, but
fundamental problem, 2 = correct

Quizzes 10%

Four throughout the quarter (approx. every other week),
lowest score dropped (April 11, April 25, May 18, May 25)

Midterm 20%

Monday, May 2, in class

Final 35%

Monday, June 6, 8:00 - 10:00 AM

Cumulative, but emphasizes material after midterm
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Labs and CAD Software Usage

 Need to know/learn Cadence/Spectre — Circuit
Simulation

e Use same breadboard as EEC 180A

e No unsupervised lab hours!

— TA or instructor must be present for your safety
and security of the lab equipment

— Extra lab hours will be added only in unusual
circumstances
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Education Demand for Circuit Design

* Industry needs circuit designers
— Not just logic designers
* Must understand operation at transistor level

— Not just digital designers
 Must understand analog effects

— Not just analog designers

* Must be able to comprehend Deep Sub-Micron
(DSM) effects (<0.13um)

« Fundamental circuit knowledge critical

— Similar technigues for bipolar transistors, NMOS (even
relays and vacuum tubes!)

— Must be able to exploit nanoscale devices in future
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Education Demand for System Design

* Industry needs system designers
— Need to understand system implications of your
design
 Power Delivery, Clock Loading — What do you need

— Need to design from the system point of view

« Communication protocol — how to effectively talk
with other blocks

* What should be added into your block to meet
system design requirements(i.e. comprehend soft
block methodology for optimization of area,
Interconnect, etc.)

You must operate at both levels!
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Historical Background
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Graph shows the growing complexity of designing

Integrated circuits
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Memory, Processors and Graphics

 Used to be that memory and processors were the
two main design drivers.

10° ;

o Microprocessor

108 - 4 Memory

107

108

Transistors per die

8008 Sourca: Intel Corp.

103 | I
1970 15980 1980 2000
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Memory, Processors and Graphics

« We now have graphics also driving integration

1000

100

10

1IH96 2H96 1H97 2H97 1H98 2H98 1H99 2H99 1HO0O0 2HO00

From ISPD 1999 Keynote Speech by Chris Malachowsky of NVIDIA
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Hybrid to Monolithic Trend

« We continue to integrate multiple functions on a
single chip

— Mixture of Analog, Radio Frequency (RF), Digital

— Graphics/Motherboard chipset an example of this
e Cost and Performance driving market

— Higher performance achieved on chip than off chip

— Lower cost due to a single die versus multi-chip
design

— Saves on packaging, total area by eliminating
redundant functions

o System-on-a-Chip (SOC) concept

Amirtharajah/Parkhurst, EEC 118 Spring 2011 14



What are the issues facing the industry ?

 Growth of transistors is exponential
« Growth of operating frequency is (was?) exponential

— Reaching a limit due to power dissipation (see current
generation Pentiums and Itaniums)

« Complexity continues to grow
— Trend is toward multiple cores on one chip
— Design teams cannot keep up with trend
« Power dissipation a concern
— Power delivery, thermal issues, long term reliability
« Manufacturing providing us with lots of transistors
— How do we use them effectively (besides large caches)?
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Why worry about power? Power Dissipation

-‘ Lead microprocessors power continues to increase
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Power delivery and dissipation will be prohibitive

Source: Borkar, De Intel®
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Why worry about power? Chip Power Density
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Chip Power Density Distribution

Power Map On-Die Temperature

Heat Flux (W/cm2)
Temperature (C)

 Power density is not uniformly distributed across the chip

e Silicon not the best thermal conductor (isotopically pure
diamond is)

« Max junction temperature is determined by hot-spots
— Impact on packaging, cooling
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Recent Battery Scaling and Future Trends

I Flat battenes

Mobile devices:
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e Battery energy density increasing 8% per year, demand
Increasing 24% per year (Economist, January 6, 2005)
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Why worry about power? Standby Power

Year 2002 2005 2008 2011 2014
Power supply Vg4 1.5 1.2 0.9 0.7 0.6
(V)
Threshold V; (V) 0.4 0.4 0.35 0.3 0.25

0 Drain leakage will increase as V. decreases to maintain noise
margins and meet frequency demands, leading to excessive

pattery draining standby power consumption.

£0% 8KW

..and phones leaky!

40% 1.7KW

30% T 400W

20% L 88W

12W

Standby Power

10% F

OO/ ] 1 1 1
’ Source: Borkar, De Intel®
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Emerging Microsensor Applications

Industrial Plants and Power Line Monitoring Operating Room of the Future
(courtesy ABB) (courtesy John Guttag)

Targe racklng & Detectlon
(Courtesy of ARL)

Location Awareness
(Courtesy of Mark Smith, HP)

Websign
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Chip Design Styles

Field-Programmable Gate Array (FPGA)

— Regular structure. Not all transistors are usable.

— Programmed via software (configurable wiring)

Gate Array

— Regqular structure. Higher usage of transistors than FPGA
— Two step manufacturing process.

« Diffusion and poly initially. Design must be fairly stable
« Metal layers fabricated once design is finalized

Cell based design

— All transistors used (may have spares to fill in area)

— Each cell is fixed height so that they can be placed in rows
Full Custom

— Highest level of compactness and performance

— Manually intensive. Not conducive to revision (ECO)

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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Logic Design Families

« Static CMOS Logic
— Good power delay product (energy)
— Good noise margin
— Not as fast as dynamic

« Dynamic Logic
— Very fast but inefficient in use of power
— Domino, CPL, OPL

 Pass Transistor Logic
— Poor noise margin
— Sometimes static power dissipation
— Less area than static CMOS

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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Design Parameters

* Reliability (Not dealt with when relating to layout)

— Factors that dictate reliable operation of the circuit

e Electromigration, thermal issues, hot electrons,
noise margins

 Performance (Dealt with in this class)

— Not just measured in clock speed. Power-Delay
Product (PDP, equivalent to energy) is a better
measure

 Area (Not dealt with when relating to layout)

— Directly affects cost
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Current State of the Art

* Intel Core® @ 4 GHz (1 or 2 cores/chip going to 4+)
— 800 - 1066 MHz system bus
— AGP 8x graphics (533 MHz bus)
— Memory bus at 533 MHz (DDR)
« Complex Designs demand resources
— Design teams resource limited due to logistics and cost

— Cannot afford to miss issues due to cost of product
recall

— Emphasis on pre-silicon verification as opposed to post
silicon testing
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Modern Microprocessor

Product Application: (> 100,000,000 transistors)
AMD’s Opteron X86-64 2003

One
centimeter

T L0

. - - |}
B LT ‘|_H-I-HFFT‘..1|'F-'-'M‘

e 8" generation processor (SledgeHammer) w/ 1MB L2 Cache
e Working on 1%t (SOI) silicon; > 100 million transistors
e ~180mm< on 130nm technology with Cu metallization and low k




Modern Multicore
Microprocessor
(790,000,000 transistors)

IBM POWERSG6 2007

Ultra-high frequency dual-core chip
— [-way superscalar, 2-way SMT core

— 9 execution units
«  2LS, 2FP, 2FX, 1BR, 1VMX,1DFU
—  790M transistors
— Up to 64-core SMP systems
- 2x4MB on-chip L2
— 32MB On-chip L3 directory and controller
— Two memaory controllers on-chip
— Recovery Unit

%5{ % " #

Technology
— CMOS 65nm lithography, SOI

High-speed elastic bus interface at 2.1 freq
— /Os: 1953 signal, 5399 Power/Gnd

Reick et al., Hot Chips 19, 2007




Moore's Law

CPU Transistor Counts 1971-2008 & Moore’s Law
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Expectations

 You should already know
— Solid State — (I.e. PN junctions, semiconductor
physics, ..)
« What we will cover
— MOQOS Transistors Fabrication and Equations
— CMOS logic at the transistor level
— Sequential logic
— Memory
— Arithmetic Circuits
— Interconnect
 Framework
— Course to use PowerPoint for the most part

— Bring PowerPoint slides to class and write notes on
them

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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MOS Transistor Types

« Rabaey Ch. 3 (Kang & Leblebici Ch. 3)
« Two transistor types (analogous to bipolar NPN, PNP)

— NMOS: p-type substrate, n* source/drain, electrons are
charge carriers

— PMOS: n-type substrate, p* source/drain, holes are
charge carriers

i gate I gate
N+ N+ P+ P+
source drain source drain

P-substrate N-substrate
J) bulk (substrate) J) bulk (substrate)
NMOS PMOS

Amirtharajah/Parkhurst, EEC 118 Spring 2011 30



MOS Transistor Symbols

NMOS D
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Note on MOS Transistor Symbols

 All symbols appear in literature
— Symbols with arrows are conventional in analog papers

— PMOS with a bubble on the gate is conventional in digital
circuits papers

« Sometimes bulk terminal is ignored — implicitly
connected to supply:

NMOS —— PMOS AdI::

 Unlike physical bipolar devices, source and drain are
usually symmetric
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MOS Transistor Structure

e Important transistor physical characteristics
— Channellength L =Ly —2x, (K&LL =Lgate —2L)
— Channel width W

— Thickness of oxide t_,

GATE

8
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MOS Transistor Regions of Operation

« Three main regions of operation

e Cutoff: Vg <V
No inversion layer formed, drain and source are
Isolated by depleted channel. ;5= 0

e Linear (Triode, Ohmic): Vgs > V4, Vps < Vgs-Vr
Inversion layer connects drain and source.
Current is almost linear with V¢ (like a resistor)

e Saturation: Vgg> Vo, Vpg = Vigs-Vy
Channel is “pinched-off”. Current saturates
(becomes independent of Vg, to first order).

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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Fabrication Process

Substrate is grown and then cut
— Round silicon wafers are used

— Purity emphasized to prevent impurities from
affecting operation (99.9999% pure)

Each layer deposited separately

Some layers used as masks for later layers

Planar process is important

— Requires minimum percent usage of metal to
ensure flatness

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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Silicon Substrate Manufacturing
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Building a Golf Course with Similar Process

e Plane drops materials from the air
— Sand, then dirt, then grass seeds, then trees

— Certain masks applied during process to prevent material
from hitting particular areas

— For instance: After Sand, mask placed over areas where
sand trap will exist. Mask later taken off at end of process
to reveal sand trap.

Amirtharajah/Parkhurst, EEC 118 Spring 2011 37



Fabrication: Patterning of SiO, Step |

UV - Light

Si - substrate ‘ ' ‘ ‘
Glass mask
with feature _ L l

SiO, (Oxide) | —a
nsoluble

photoresist
Ea

-

Si - substrate
SiO, (Oxide)

becomes soluble

Photoresist__

— Si - substrate
Si0, (Oxide) —»

Si - substrate

Grow SiO, on Si by exposing to O,

— High temperature accelerates this process

Cover surface with photoresist (PR)

— Sensitive to UV light (wavelength determines feature size)
— Positive PR becomes soluble after exposure

— Negative PR becomes insoluble after exposure
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Fabrication: Patterning of SiO, Step |l

Hardened
photoresisth

——

Hardened @ @ @ @ Si - substrate

photorcsml

Chemical etch (HF acid) or dry etch (plasma)

[
SiO, (Oxide) ——»

Si - substrate SiO, (Oxide) ——» | \ /—

Si - substrate

« Exposed PR removed with a solvent
e SIiO, removed by etching (HF — hydrofluoric acid)

« Remaining PR removed with another solvent
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NMOS Transistor Fabrication

Si0, (Oxide) ——» \ /

Si - substrate

Si - substrate

Thin oxide

SiO, (Oxide) —»

S0, (Oxide) ——»

Si - substrate

Si - substrate

 Thick field oxide grown
* Fileld oxide etched to create area for transistor

 Gate oxide (high quality) grown
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NMOS Transistor Fabrication

Polysilicon —__ Polysilicon
T T 3 5 S R
Thin oxide ——» :)\h'\m"“'_' . : :
Si0, (Oxide) —» \ U T / ’
SiO, (Oxide) ——»
Si - substrate
Si - substrate
Polysilicon \
Thin oxide -

Si0, (Oxide) —»

Si0, (Oxide) —

Si - substrate

Si - substrate

 Polysilicon deposited (doped to reduce resistance R)
 Polysilicon etched to form gate
o Gate oxide etched from source and drain

— Self-aligned process because source/drain aligned by
gate

 Sidoped with donors to create n+ regions
Amirtharajah/Parkhurst, EEC 118 Spring 2011 41



NMOS Transistor Fabrication

Metal (Al)

Insulating

oxide \

S|02 (OXIdc} e P

Si0, (Oxide) —» [

[n+|[n+|

Si - substrate

Insulating Metal __
contact -

oxide \

SiO, (Oxide) —— |
n+ [oe |

Si - substrate

SiO,, (Oxide) —»

Si - substrate

* Insulating SiO, grown to cover surface/gate

e Source/Drain regions opened
« Aluminum evaporated to cover surface

e Aluminum etched to form metall interconnects

Amirtharajah/Parkhurst, EEC 118 Spring 2011 42



Inverter Fabrication: Layout

‘: GND Yoo

—
_|

e |nverter

NN

7

72227

.\\\\\\

— Logic symbol
— CMOS inverter circuit

— CMOS inverter layout (top view of lithographic
masks)
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Inverter Fabrication: NWELL and Oxides

.

p

ARALRANAAAANLAN Y

e N-wells created

e Thick field oxide grown surrounding active
regions

 Thin gate oxide grown over active regions

Amirtharajah/Parkhurst, EEC 118 Spring 2011

44



Inverter Fabrication: Polysilicon

 Polysilicon deposite
— Chemical vapor deposition (Places the Poly)

— Dry plasma etch (Removes unwanted Poly)

Amirtharajah/Parkhurst, EEC 118 Spring 2011 45



Inverter Fabrication: Diffusions

p* ! .

« N+ and P+ regions created using two masks
— Source/Drain regions
— Self-aligned process since gate is already fabricated

— Substrate contacts
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Inverter Fabrication

| vapor

ICa

ted using chemi

depos

O,

Ing S
(CVD)

Insulat

lon

depos

/Substrate contacts exposed

In

Source/Dra

47
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Inverter Fabrication

GND

ARRAAARRARY

n-channel

oo

transistor

§+___ p-channel
i transistor

 Metal (Al, Cu) deposited using evaporation

 Metal patterned by etching

« Copper is current metal of choice due to low resistivity

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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NWELL MQOS Process

Input

« MOS transistors use
PN junctions to
Isolate different
regions and prevent

n-well

\\\\\\\\\\\\
,,,,,,,,,,,,

| current flow.

,,,,,,,,,,,,,

n-type p-type

i = == @ B <NWELLisusedin P-
substrate so that
PMOQOS transistors are
Isolated and don’t
share currents.

i : - =

£ olysilicon = i

| k

ource rain
ate

oxide
nMOS transistor =
p-type substrate pMOS transistor
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More Complex Processes

 Twin Well CMOS Process
— Can help to avoid body effect
— Allows for Vt and channel transconductance tuning

— Requires extra processing steps (more costly)

THERMAL COMPOSITE-GATE

0XIDE P-GLASS SIN AL
N e
1 J _}..—]
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Silicon-On-Insulator (SOI) Process

 Both transistors built on insulating substrate

— Allows for tight compaction of design area

— Some of the parasitic capacitances seen in bulk CMOS

disappear

— Wafer cost is high (IBM produces SOI, Intel doesn’t)

e

A/

A\

Insulating Substrate

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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Accounting for VDSM Effects

« VDSM = Very Deep Sub Micron

— Effects significant below 0.25 um (0.18 um, 130 nm, 90
nm, 65 nm, 45 nm)

« Compensation made at the mask level
— OPC - Optical Proximity Correction
— Occurs when different mask layers don’t align properly
— Test structures are used to characterize the process

— Ability to adapt depends on the consistency of the error
from process run to process run

Amirtharajah/Parkhurst, EEC 118 Spring 2011
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Accounting for VDSM Effects: OPC

wWITHOUT OPC wITH OPC
Dense
CDO
i wWindow
Dense
" CD1 —-\
% wWindow
= Dense Iso
Ty
= W'E[::Iﬂ W'E[::Iﬂ Iso
E indow indow CD 1 -
wWindow
Den_ae 50 Iso _,ff'
CD1 Window : e
s~ CD1 Window CDO -
wWindow / T
MO Common Common Common Common
Dense/llso Dense/lso Dense/lso  Dense/lso
CDO Window!l CD1 Window CDO Window CDI1 Window
fie=-
FOCUS
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Accounting for VDSM Effects: Example

« Example of 2D OPC effects: rounded edges,
narrowed lines

Uncorrected Corrected
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Compensating for VDSM Effects: Masks

=

Layout

o
-

Mask
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Compensating for VDSM Effects: CAD

 Flow to compensate is transparent to layout designer
e Layout design proceeds as normal

Manufactisring

Enhancements
Calibre

Interactive . 3 ¢ ;
IC Design | & o~ ' et Tt IC &

|
Tools | 1 . Mask
' Manulacturing

¥iewing

Environment
Extrirction

Mentor Graphics Flow

http://www.mentor.com/calibre/datasheets/opc/html/
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e “Design of VLSI Systems”. A web based course
located at: http://fturquoise.wpi.edu/webcourse/

« “Simplified Rule Generation for Automated Rules-
Based Optical Enhancement”, Otto et. al. On web
at:
http://www.jetlink.net/~ootto/bacus95/BACUS95In
dex.html

« Mark Anders and Jim Schantz of Intel Corporation

 Jan Rabaey, Lecture notes from his book “Digital
Integrated Circuits, A Design Perspective”
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MOSFET Drain Current Overview

HC, W
=
2 L

Saturation:

(VGS _VT )2 (1+ AVDS )

Linear (Triode, Ohmic):

W VS
|, = 1C,, L((VGS —V; )‘/Ds _;S)

Cutoff: |, =0

“Classical” MOSFET model, will discuss deep submicron
modifications as necessary (Rabaey, Egs. 3.25, 3.29)
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A Fourth Region: Subthreshold

Vas [ _\@\
kT kKT
Subthreshold: | = |Se”A 1—e /4

\ J

« Sometimes called “weak inversion” region

« When Vg near V., drain current has an exponential
dependence on gate to source voltage

— Similar to a bipolar device
 Not typically used in digital circuits
— Sometimes used in very low power digital applications

— Often used in low power analog circuits, e.g. quartz
watches
Amirtharajah/Parkhurst, EEC 118 Spring 2011



Next Topic: MOSFET Details

« MOS Structure

— Derivation of threshold voltage, drain current equations
« MOSFET Scaling
« MOSFET Capacitances

Amirtharajah/Parkhurst, EEC 118 Spring 2011 60
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