
EEC 118 Spring 2011 Lab #5
Manchester Carry-Chain Adder

Rajeevan Amirtharajah
Dept. of Electrical and Computer Engineering

University of California, Davis

Issued: May 9, 2011
Due: May 20, 2011, 5 PM in 3173 Kemper.

1 OBJECTIVE

The objective of this lab is to use Cadence to build and simulate dynamic CMOS circuits
for building fast adders.

2 PRELAB

There is no prelab for this lab.

3 MIXED-MODE SIMULATION TUTORIAL

You have so far verified your circuits through analog simulation using Spectre. Analog
simulation gives the most accurate results regarding the performance and power consumption
of your circuits, but it can be very slow for large designs. Digital simulation (for example,
using a hardware description language (HDL) simulation like Verilog) is very quick but
typically does not give particularly accurate results. Mixed-signal or mixed-mode simulation
is a compromise between the two which allows the designer to specify parts of the design to
be simulated using a Verilog simulator while other parts are to be simulated using Spectre.
This is particularly convenient for creating digital stimulus vectors to exercise various aspects
of a large digital circuit like the critical path of an adder.

Part 3.1 Mixed-Mode Testbench Schematic and Simulation Setup Create a new
schematic cell view using the Library Manager for a new cell called lab5MMtut tb. In this
schematic, you will instantiate your DUTs (the NAND2 gate and AND2 gate you created
in Lab 3), as well as additional components for testing them. In Figure 1, these additional
components include a voltage source for the analog simulation power supply (just like you
had in the Spectre simulation testbench) and back-to-back instances of the inv 1x cell from

1

Figure 1: NAND2/AND2 gates mixed-mode cell simulation testbench schematic.

your library. Having two inverters allows you to simulate one of the inverters in the digital
domain and the second inverter in the analog domain to create an analog waveform to drive
the DUT (which you are also simulating using the analog simulator). Similarly, the two
inverters at the output of the DUT are a convenient way of converting the analog output
voltage of the DUT to a digital signal which can be verified using behavioral Verilog code.

To drive the mixed-mode simulation, you need to create a new cell view of the testbench
schematic called a config view. Go to the Library Manager and select File→New→Cell
View... Fill in the View Name field in the popup as config. This should automatically
select Hierarchy Editor as the Tool. Click OK. Two nested windows should pop up
named Virtuoso Hierarchy Editor and New Configuration. In the New Configuration
window, select Use Template. In the Use Template dialog window, select spectreVerilog

and click OK. The fields in the New Configuration window should now be filled in. Change
the View: field to schematic, make sure the correct values are filled in the Library:, Cell:,
and View: fields, and click OK to create the config view.

You should get a Hierarchy Editor window like the one shown in Figure 2. Click on
the Tree View tab and some of the icons in the Tree View frame. A list of the instances
and the components within each instance appears as you descend the design hierarchy,

2

terminating with transistor instances from the UCD Analog Parts library. The key to mixed-
mode simulation is to specify views which result in analog (Spectre) simulation for some cells
and digital (Verilog) simulation for other cells. The config view describes each instance in
the testbench schematic and allows you to choose the view used to simulate it. You are
making this choice for a tree of cells, so any cells under the initial cell will inherit that choice
by default. You can always descend the hierarchy further and change it to suit your needs.
By stretching out the Instance bar at the top of the Tree View frame, you can see that every
cell instance has the schematic view selected initially, implying that the entire simulation
will be analog.

To proceed, we have to do two things: (1) specify the interface elements the mixed-mode
simulation will use to connect the digital and analog portions of the circuit and (2) partition
the circuit so some of the elements are simulated using Verilog. Save your config view and
close the Hierarchy Editor window. Re-open the config view for the cell from the Library
Manager window and select yes to open both the config and schematic views. Switch the
Hierarchy Editor to Tree View and in the schematic window select Launch→Mixed Signal
Options→Verimix to enable the Verimix pulldown menu in the menu bar at the top of the
Schematic Editor window. Invoke Verimix→Interface Elements→Default Options... In the
IE Default Options popup, change the Default IE Library Name field to UCD Analog Parts

and click OK. Now you can select Verimix→Interface Elements→Library and the IE Prop-
erty Editor window will appear. You can now set the characteristics of the analog-to-digital
(a2d) and digital-to-analog (d2a) interface elements, such as the input and output logic lev-
els, rise/fall times, etc. First, set the Model IO pulldown menu to input. Then, set the
Model Parameters timex, vl, and vh to 10p (10ps), 0.6 (∼ 1

3
of the nominal VDD of 1.8V),

and 1.2 (∼ 2
3

of the nominal VDD of 1.8V), respectively. Click Apply. Change Model IO to
output. Set the d2a rise and fall times to 2p and the output high and low to 1.8 and 0,
respectively. Set valx to 0.9. Click OK.

In this testbench, since the inverters start with transistor-level schematics, we need to
replace the inverter view to use with a functional (i.e., HDL) view. Copy the inv cell
functional view from the UCD Digital Parts library to the inv 1x cell in your EEC 118
library. If you edit the functional view for inv 1x, a text editor (gedit) window will pop
up with the behavioral code for the inverter. Edit the module name to match the name of
your cell. Save the file and quit the editor.

In the Hierarchy Editor window, selecting one of the instance names highlights the current
instance in the schematic. For the four inverters at the inputs and outputs, click the View
To Use field (it appears blank initially) and type in functional.

Select View→Update to update the view and save the final version of the config view.
You can double-check that your partitioning is correct by invoking

Verimix→Display Partition→All Active
in the schematic editor window. You should see highlighted in red all of the components and
nets to be simulated in Spectre and highlighted in orange all the components and nets to be
simulated in Verilog. The mixed-mode simulator has added implicit d2a and a2d components
between the simulation domains and these are highlighted in blue. You may need to go back
to the Hierarchy Editor and explicitly enter the View To Use as schematic for some of the
cells. Remember, only the inverters connected to the input and output pins of the testbench
schematic should be using functional views.

3

Part 3.2 Mixed-Mode Simulation
Now select Launch→ADE L from the schematic editor to start up the analog simulation

environment. In the ADE window, choose Setup→Design... and select lab5MMtut tb and
the config view. Choose Setup→Simulator/Directory/Host... and set the Simulator field to
spectreVerilog and the Project Directory to /home/<username>/eec118/simulation. In
the Setup→Model Libraries... menu, make sure you fill in the same model file location you
used in earlier labs. In the Setup→Environment... menu, click the Verilog Netlist Option..
button and make sure that the Generate Test Fixture Template, Netlist SwitchRC, Drop
Port Range, and Preserve Buses boxes are all checked. Also, make sure the Generate Test
Fixture Template pulldown menu is set to Verimix. Click OK twice to get back to the ADE
window.

Now you need to create your digital testbench code. Select Setup→Stimuli→Digital...
and the text editor window should appear with some initial template code in the Verilog
language. Edit the file so that it looks like the code in Figure 3. Save the file and close
the text editor. A copy of the file is also available on the EEC118 SmartSite. To help
you understand the stimulus file, some lecture notes on Verilog are on the SmartSite and
numerous other resources for learning Verilog syntax are available online.

Set the analysis mode to tran and configure the analysis to simulate the circuit for 40ns
using conservative accuracy. If you need to set any design variables and values, do those
as well. Select signals to be plotted as you did in the previous labs. Be sure to include the
digital inputs and outputs of the testbench as well as the analog inputs and outputs of the
DUTs. One issue that often crops up in mixed-mode simulation is the initial convergence of
the analog circuits. To help Spectre converge, invoke Simulation→Convergence Aids→Initial
Condition ... from the schematic editor window and once the pop up appears, initialize the
input nodes to your DUTs to 0V. Netlist and run the simulation. The waveform plot window
should appear in addition to two logs: one for the digital simulations and the other for the
analog simulation. Look over the log files and you should see that the Verilog simulation has
printed out the correct values for the gate outputs. In the waveform plot window, convert
the plot to a strip chart by clicking on the four horizontal rectangles icon. At the top you
should see digital waveforms for the two inputs and two outputs and analog waveforms below
for the other signals. Print the plot and turn it in with your project report. You should get
something similar to Figure 4.

4 ADDER DESIGN AND SIMULATION

In this section of the lab, you will design and verify through mixed-mode simulation a 32 bit
ripple-carry adder implemented using a Manchester carry-chain. A brief description of the
circuit is provided in Chapter 11 of the Rabaey book [1]. To build up the adder, you must
decide how to use design hierarchy to best effect.

4.1 Propagate and Generate

One approach to simplifying adder implementation is to use logic gates which produce propa-
gate and generate signals. These intermediate signals can then be combined to create the sum

4

and carry out signals for each pair of summand bits. Create a new cell called PGgate which
takes individual input bits A and B and produces the two outputs P and G for propagate
and generate, respectively. You can use any static (nonclocked) circuit style to implement
these gates, including the transmission gate XOR circuits described in the book. Create
both a schematic and a symbol view for the circuit and show them to the TA or instructor
for checkoff.

4.2 32b Ripple-Carry Adder

You should now create a schematic for a 32b ripple-carry adder in a cell named adder32b.
In addition to the PGgate, you will need cells to create the sum output bits and a circuit to
transmit the carry bits from LSB to MSB. This carry circuit will use the dynamic Manchester
carry-chain circuit shown in Figure 11-9 of the Rabaey book. You must decide whether you
want to create a 32 pass transistor version of the carry chain or whether you want to buffer
the chain using inverters to speed it up. The design choices are up to you, but you will need
to document and justify them in your report. Choose transistor sizes such that the adder
can operate at 100MHz. Also, create a symbol view for the 32b adder cell, which includes
the summands, LSB carry in, a CLK for the dynamic circuits, the sum output, and the carry
output. Show your schematic and symbol views to the TA or instructor for checkoff.

4.3 32b Ripple-Carry Adder Testbench and Stimulus

Create a new schematic cell view using the Library Manager for a new cell called lab5 add32 tb.
In this schematic, you will instantiate your DUT, as well as additional components for testing
them. You should end up with a schematic similar to Figure 5. Note that you can simplify
the schematic (and save work) by using buses. The input and output pins use vector syntax
(e.g., <31:0>) to identify signals and instances which correspond to buses and multiple copies
of the same cell.

Run a mixed-mode simulation with test vectors applied using a Verilog stimulus file,
similar to what you did in the tutorial. Choose vectors so that you can simulate and measure
the worst case propagation delay of the critical path of the adder. Plot the analog output
waveforms showing this worst case delay. Identify the critical path, show how your stimulus
file exercises this path, show the plot, and confirm your measured propagation delay with
the TA or instructor for checkoff.

Checkoff

Show your completed schematics, stimulus file listing, and all waveform plots to the TA for
checkoff.

Report

Write up your design decisions and simulation results in a lab report. Your report can be
brief, but must include the following sections in addition to the completed summary sheet

5

attached at the end of this lab. The summary sheet will be the cover page of your lab. Be
sure to include schematics of your circuits, your stimulus vector file listing, and any waveform
plots.

1. Overview: Describe in one paragraph the objectives of the lab. State what you were
designing and testing and what data you expected to gather as a result of your exper-
iments.

2. Design and Verification: Describe your design choices for the propagate and generate
logic, the carry-chain, and the sum logic and how these influence the delay of the critical
path. Summarize how you chose the test vectors in your stimulus file to exercise this
critical path.

3. Results and Discussion: Enter your critical path measurement result into the summary
table. Does the result make intuitive sense? If not, explain why it might contradict
your intuition. How would you go about decreasing the delay?

6

EEC 118 Spring 2011 Lab #5 Summary

Name:

Grading:

Part Checkoff TA Initials Date
3.2 Mixed-Signal Waveform Plot
4.1 PGgate Schematic
4.1 PGgate Symbol
4.2 adder32b Schematic
4.2 adder32b Symbol
4.3 Critical Path Stimulus File
4.3 Critical Path Waveform Plot

Value
4.2 Critical Path Delay

7

References

[1] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Per-
spective, 2nd ed. Upper Saddle River, New Jersey: Prentice-Hall, Inc., 2003.

8

Figure 2: Mixed-mode simulation config view Hierarchy Editor window.

9

// Vermix stimulus file.

// Default verimix stimulus.

initial

begin

 A0in = 1'b0;

 B0in = 1'b0;

 #5 $display("A0in = %b, B0in = %b, Y0out = %b",A0in,B0in,Y0out);

 $display("A1in = %b, B1in = %b, Y1out = %b",A0in,B0in,Y1out);

 #5 B0in = 1'b1;

 #5 $display("A0in = %b, B0in = %b, Y0out = %b",A0in,B0in,Y0out);

 $display("A1in = %b, B1in = %b, Y1out = %b",A0in,B0in,Y1out);

 #5 B0in = 1'b0;

 A0in = 1'b1;

 #5 $display("A0in = %b, B0in = %b, Y0out = %b",A0in,B0in,Y0out);

 $display("A1in = %b, B1in = %b, Y1out = %b",A0in,B0in,Y1out);

 #5 B0in = 1'b1;

 #5 $display("A0in = %b, B0in = %b, Y0out = %b",A0in,B0in,Y0out);

 $display("A1in = %b, B1in = %b, Y1out = %b",A0in,B0in,Y1out);

end

Figure 3: Digital stimulus file.

10

May 10, 2011 Transient Response

/Y1out

/Y0out

/B0in

/A0 in

0 1 0 2 0 3 0 4 0
time (ns)

2.0

−.25

V
(V

)
V

(V
)

2 .0

−.25

V
(V

)
V

(V
)

2 .0

−.5

V
(V

)
V

(V
)

2 .0

−.25

V
(V

)
V

(V
)

2 .0

−.25

V
(V

)
V

(V
)

 /nY1

 /nY0

 /nA1

 /nB0

 /nA0

time (ns)

User: ramirtha Date: May 10, 2011 12:59:15 PM PDT EEC118_ramirtha lab5MMtut_tb config : May 10 12:20:02 2011 19

Figure 4: Mixed-signal simulation waveform plot.

11

Figure 5: Mixed-mode adder32b simulation testbench schematic.

12

