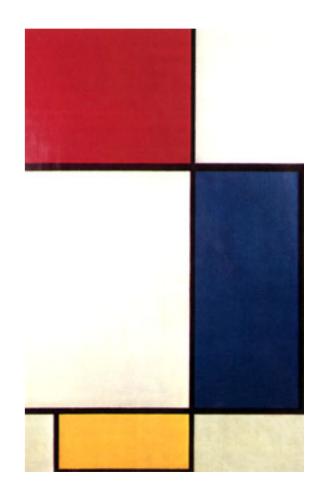
Arithmetic Building Blocks Chapter 11 Rabaey



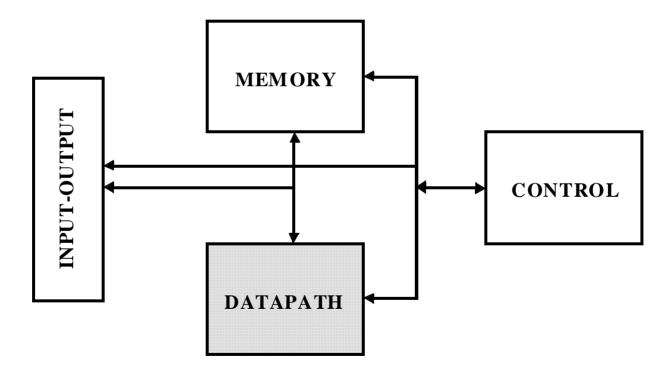
Digital Integrated Circuits

Arithmetic

Announcements

- Today: wrap up dynamic circuits, start discussing arithmetic circuits
- Homework 6 due next Monday
- Lab 5 (simulation) starts this week
- Midterms handed back on Wednesday

A Generic Digital Processor



Building Blocks for Digital Architectures

Datapath (Arithmetic Unit)

- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)

Memory

- RAM, ROM, Buffers, Shift registers

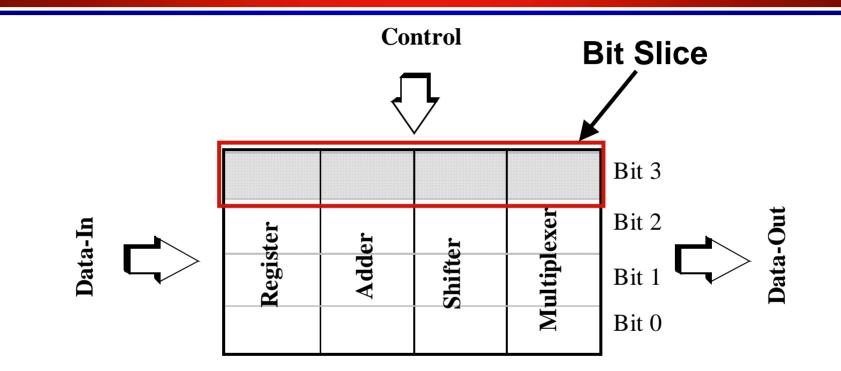
Control

- Finite state machine (PLA, random logic.)
- Counters

Interconnect

- Switches
- Arbiters
- Bus

Bit-Sliced Design



Tile identical processing elements

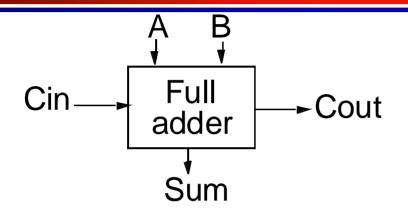
Digital Integrated Circuits

Arithmetic

Full Adder

B А Carry C_i C_{o} \boldsymbol{B} S Astatus Full Cin ► Cout adder delete delete Sum propagate propagate propagate propagate generate generate

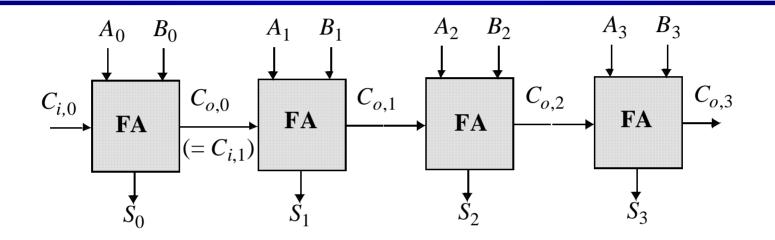
The Binary Adder



$$S = A \oplus B \oplus C_{i}$$

= $A\overline{B}\overline{C}_{i} + \overline{A}B\overline{C}_{i} + \overline{A}\overline{B}C_{i} + ABC_{i}$
$$C_{0} = AB + BC_{i} + AC_{i}$$

The Ripple-Carry Adder



Worst case delay linear with the number of bits $t_d = O(N)$

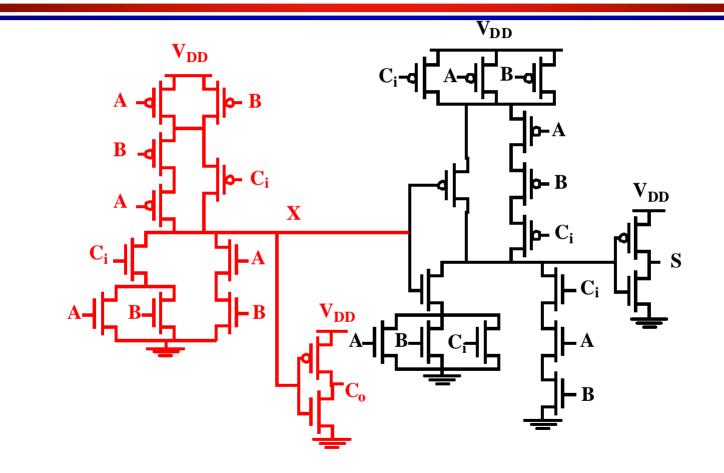
$$t_{adder} \approx (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

Digital Integrated Circuits

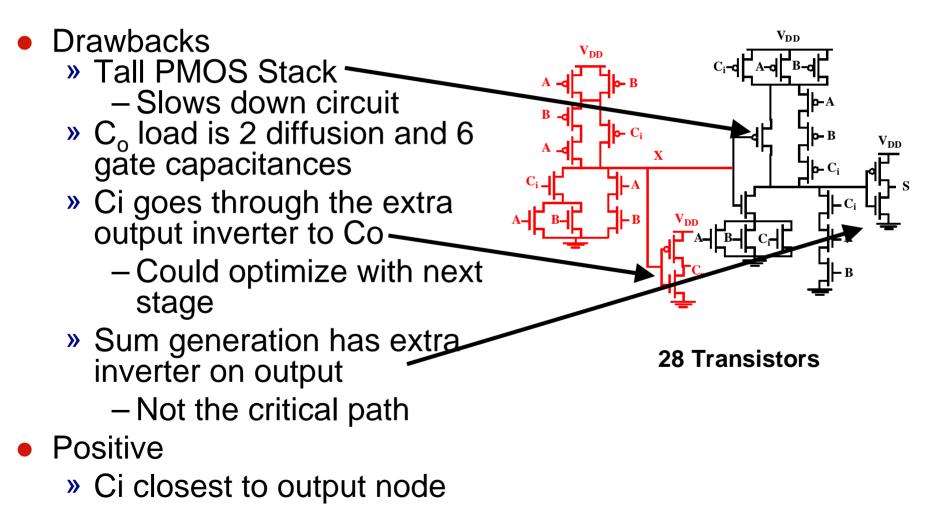
Arithmetic

Complimentary Static CMOS Full Adder



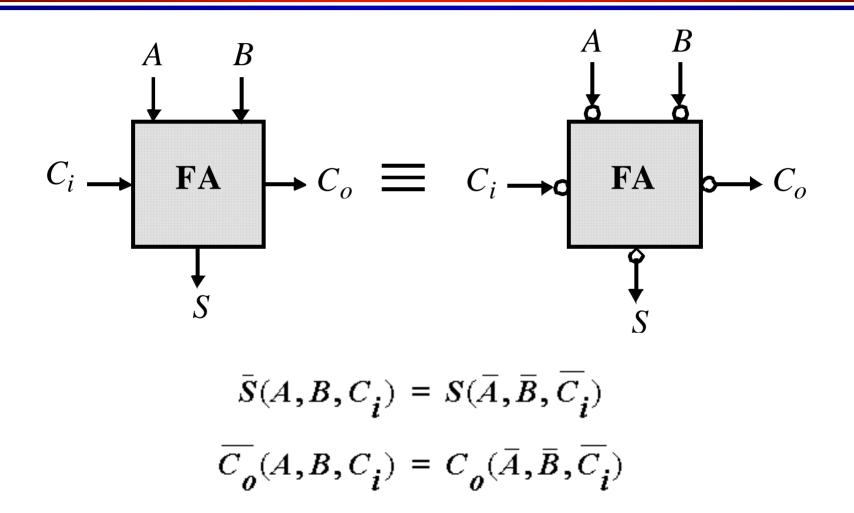
28 Transistors

A Closer Look



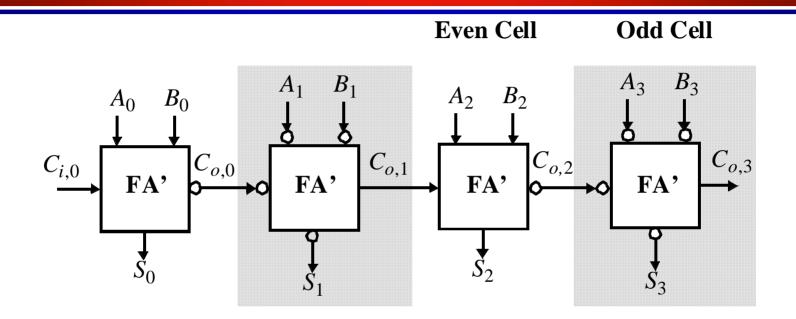
Arithmetic

Inversion Property



Arithmetic

Minimize Critical Path by Reducing Inverting Stages



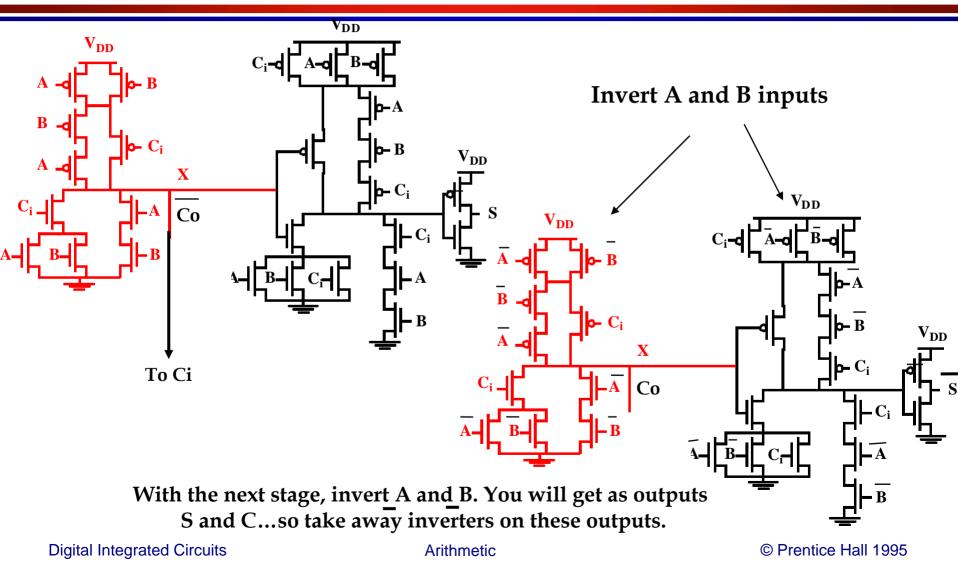
Exploit Inversion Property

Note: need 2 different types of cells

Digital Integrated Circuits

Arithmetic

Applying Inversion Property



Express Sum and Carry as Function of P, G, D

Define 3 new variable which ONLY depend on A, B

Generate (G) = AB $C_0 = 1$ if G = 1 Propagate (P) = A \oplus B $C_0 = C_i$ if P = 1 Delete = $\overline{A} \overline{B} C_0 = 0$ if D = 1

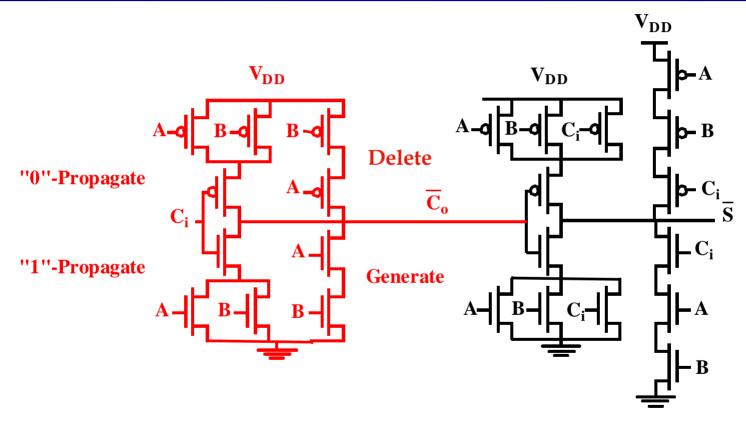
$$C_o(G, P) = G + PC_i$$

$$S(G, P) = P \oplus C_i$$

A	В	C _i	S	Co	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

Can also derive expressions for S and C_o based on D and P

A Better Structure: the Mirror Adder



24 transistors

The Mirror Adder I

- •The NMOS and PMOS chains are completely symmetrical. This guarantees identical rising and falling transitions if the NMOS and PMOS devices are properly sized. A maximum of two series transistors can be observed in the carry-generation circuitry.
- •When laying out the cell, the most critical issue is the minimization of the capacitance at node C_0 . The reduction of the diffusion capacitances is particularly important.
- •The capacitance at node C_{o} is composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell .

Digital Integrated Circuits

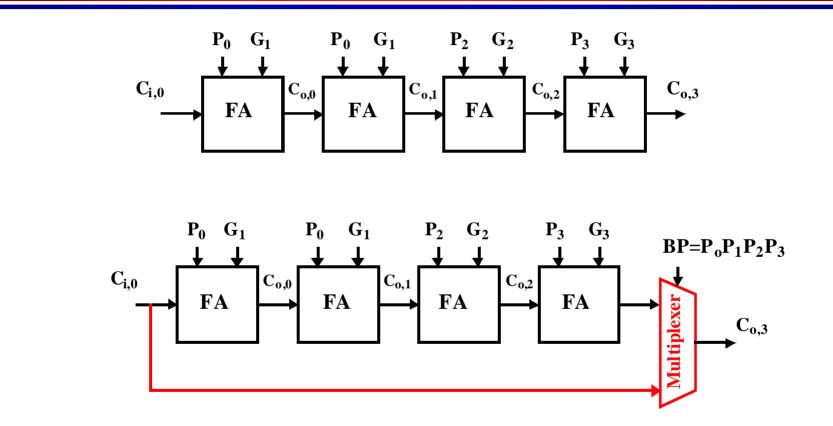
The Mirror Adder II

- •The transistors connected to C_i are placed closest to the output.
 - Fastest for late arriving inputs, C_i tends to arrive late
- •Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size.

Adder Architectures

- In addition to optimizing each full adder cell and exploiting inversion property, we can also reorganize the add computation to speed things up
- •Basic idea is to overlap propagating the carry with computing the Propagate and Generate functions
- •Discuss three basic architectures
 - Carry-Bypass
 - Carry-Select
 - Carry-Lookahead

Carry-Bypass Adder

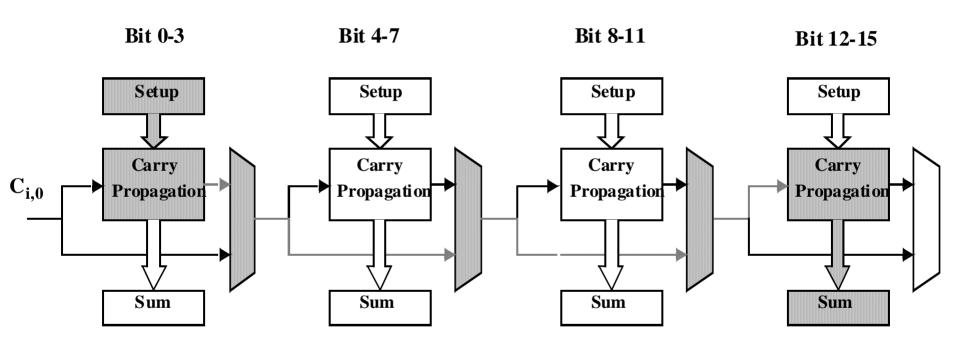


Idea: If (P0 and P1 and P2 and P3 = 1) then $C_{03} = C_0$, else "kill" or "generate".

Digital Integrated Circuits

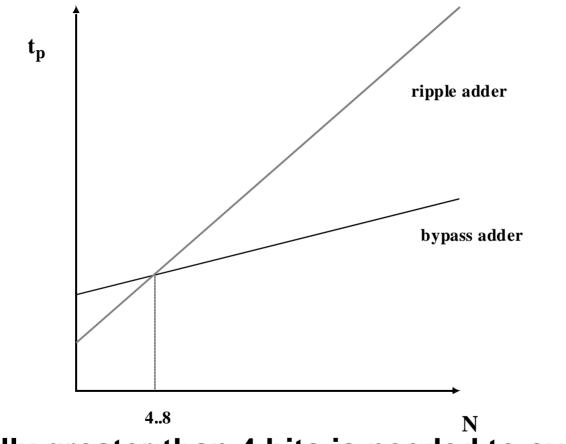
Arithmetic

Carry-Bypass Adder (cont.)



Note that this is done at the expense of a MUX in the carry delay path !!

Carry Ripple vs. Carry Bypass

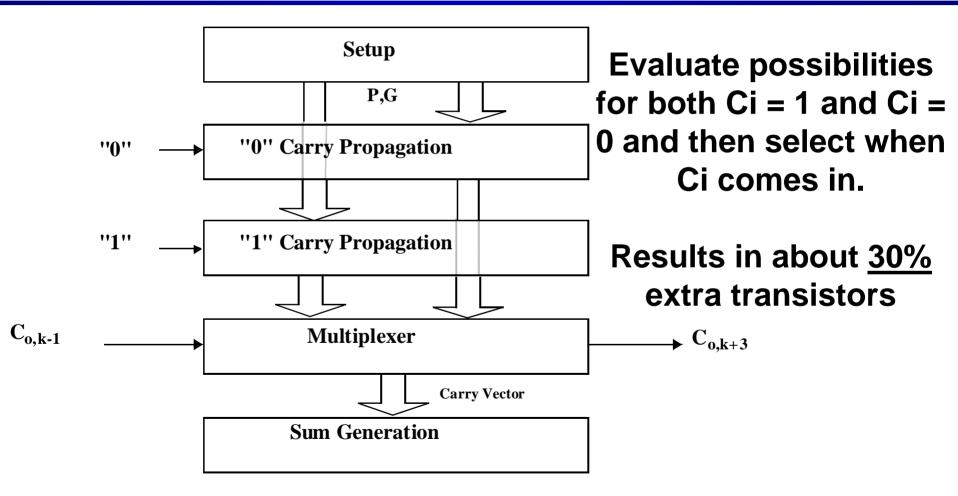


Essentially greater than 4 bits is needed to overcome the overhead of the MUX

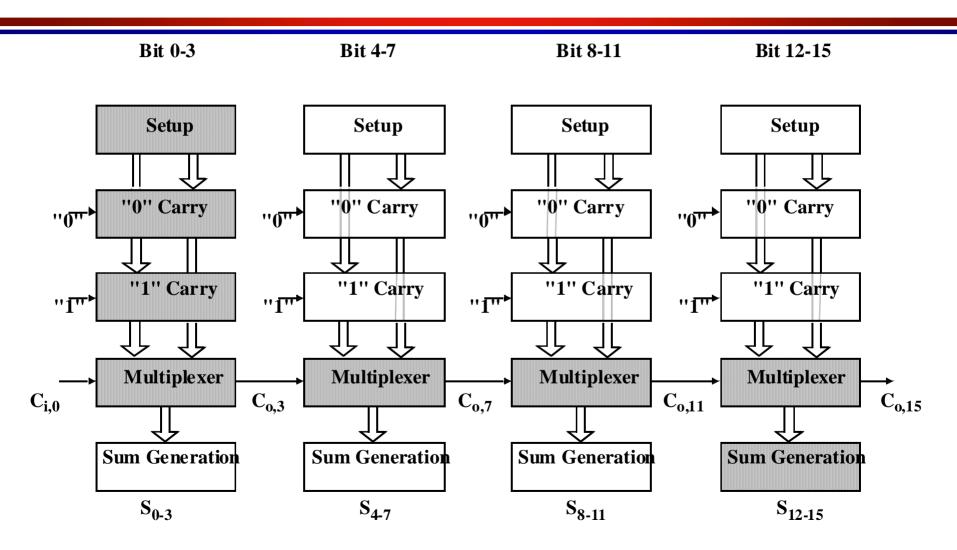
Digital Integrated Circuits

Arithmetic

Carry-Select Adder



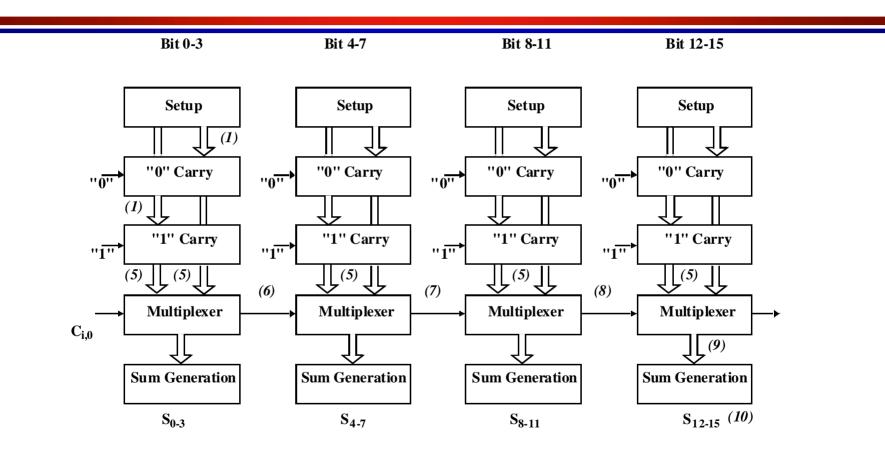
Carry Select Adder: Critical Path



Digital Integrated Circuits

Arithmetic

Linear Carry Select



$$t_{add} = t_{setup} + \left(\frac{N}{M}\right) t_{carry} + M t_{mux} + t_{sum}$$

Digital Integrated Circuits

Arithmetic

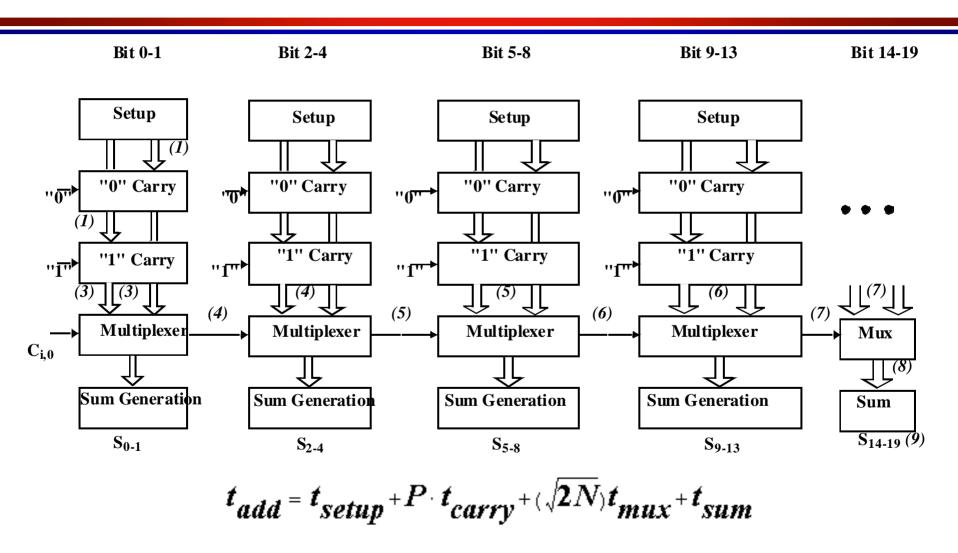
Carry-Select Adder Observations

• The inputs to the final multiplexer are steady long before the Mux select (Ci) arrives

» Path is the same as is the number of bits

- Would be helpful to try and even out the delays so that the critical path is balanced between inputs and Mux select.
 - » Make logic simpler with the least significant bits by reducing the number of bits handled in the FA or half adder (HA). HA is FA without Ci (2 ins, 2 outs)
 - » Add bits progressively as you move to the MSB

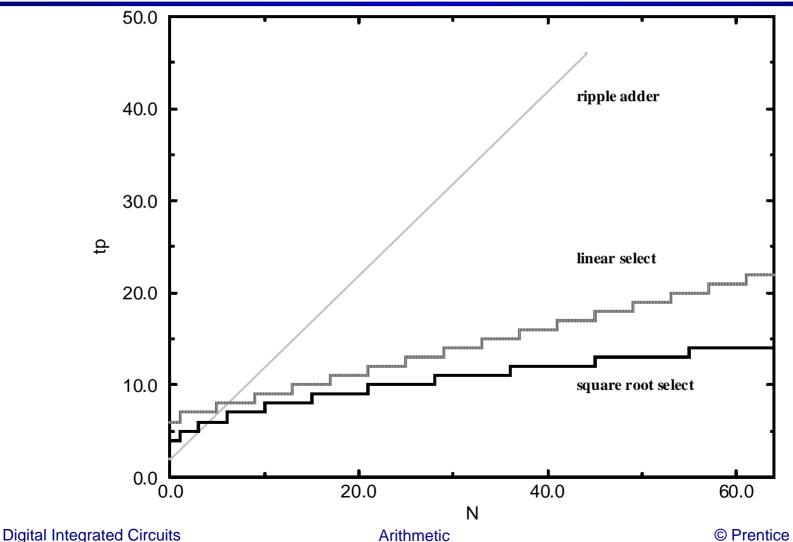
Square Root Carry Select



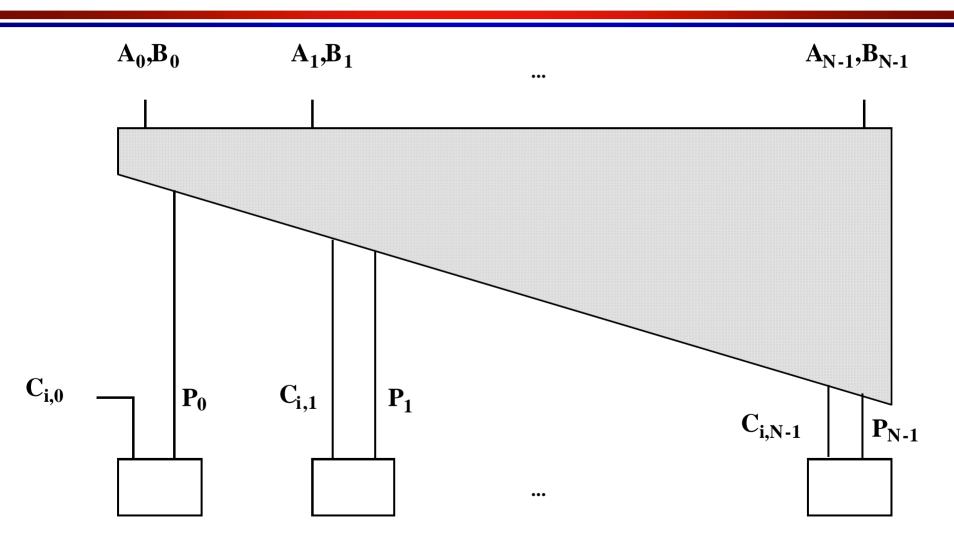
Digital Integrated Circuits

Arithmetic

Adder Delays: Comparison



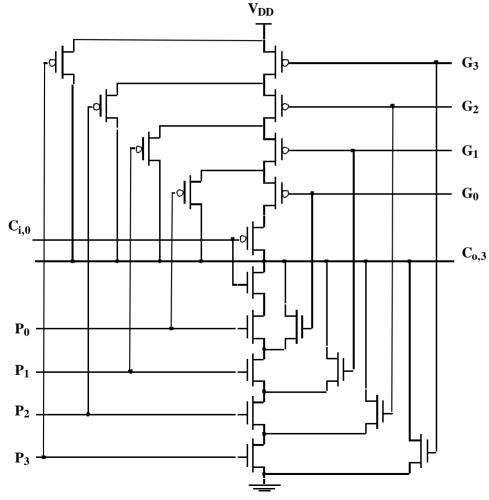
Carry Look Ahead: Basic Idea



Digital Integrated Circuits

Arithmetic

Look-Ahead: Topology



- No more than N = 4 bits
 - Delay still increases linearly with number of bits
 - Capacitance, resistance too high for N > 4

Binary Multiplication

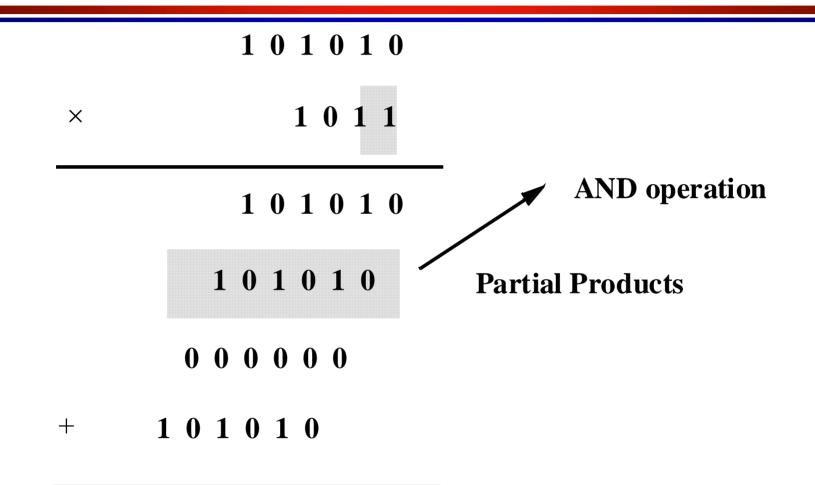
$$Z = \ddot{X} \times Y = \frac{M + N - 1}{\sum_{k=0}^{N-1} Z_k 2^k}$$
$$= \left(\frac{M - 1}{\sum_{i=0}^{N-1} X_i 2^i} \right) \left(\frac{N - 1}{\sum_{j=0}^{N-1} Y_j 2^j} \right)$$
$$= \frac{M - 1}{\sum_{i=0}^{N-1} (\sum_{j=0}^{N-1} X_i Y_j 2^{i+j})}$$
with
$$X = \sum_{i=0}^{M-1} X_i 2^i$$

 $X = \sum_{i=0}^{N-1} X_i^2$ $Y = \sum_{j=0}^{N-1} Y_j^2^j$

Digital Integrated Circuits

Arithmetic

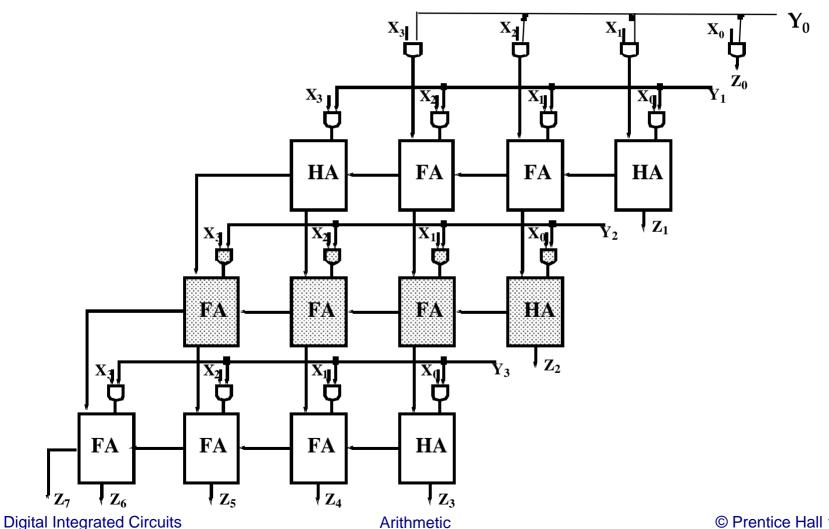
Binary Multiplication



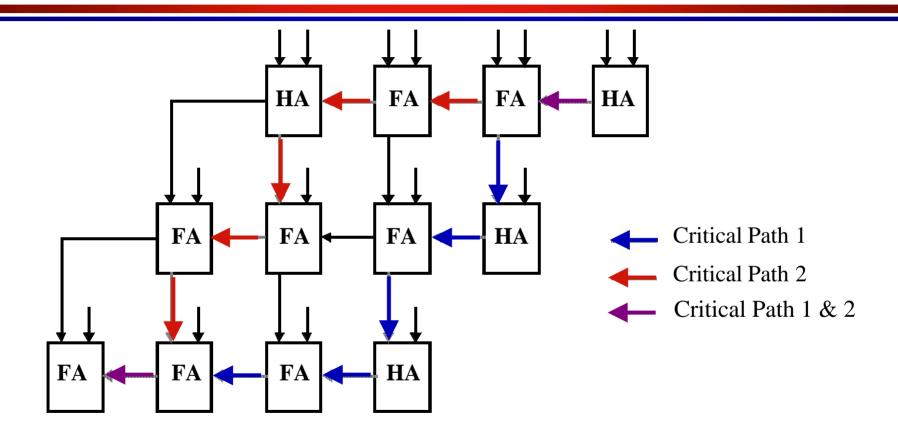
Digital Integrated Circuits

Arithmetic

The Array Multiplier



The MxN Array Multiplier: Critical Path

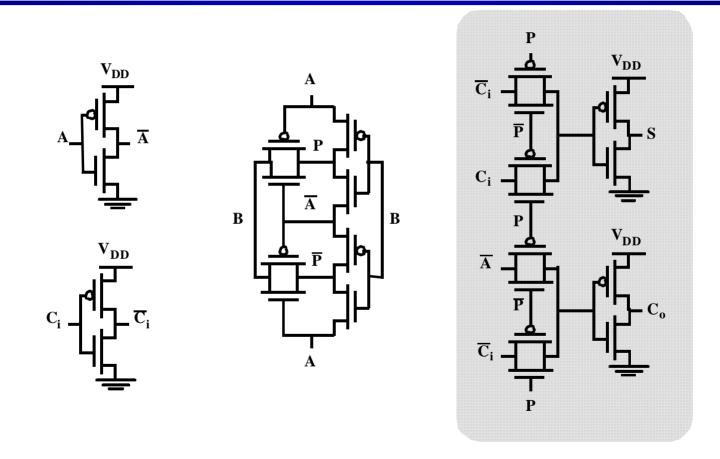


$$t_{mult^{\sim}[(M-1)+(N-2)]}t_{carry^{+}(N-1)}t_{sum^{+}} t_{and}$$

Digital Integrated Circuits

Arithmetic

Adder Cells in Array Multiplier

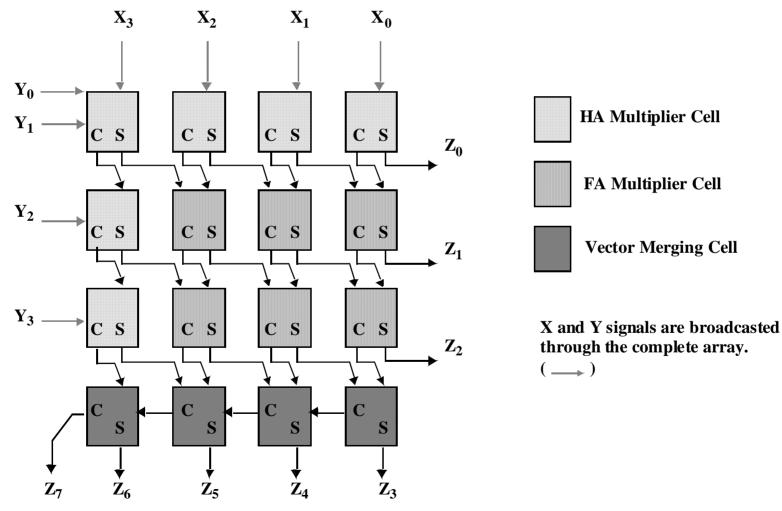


Identical Delays for Carry and Sum

Digital Integrated Circuits

Arithmetic

Multiplier Floorplan



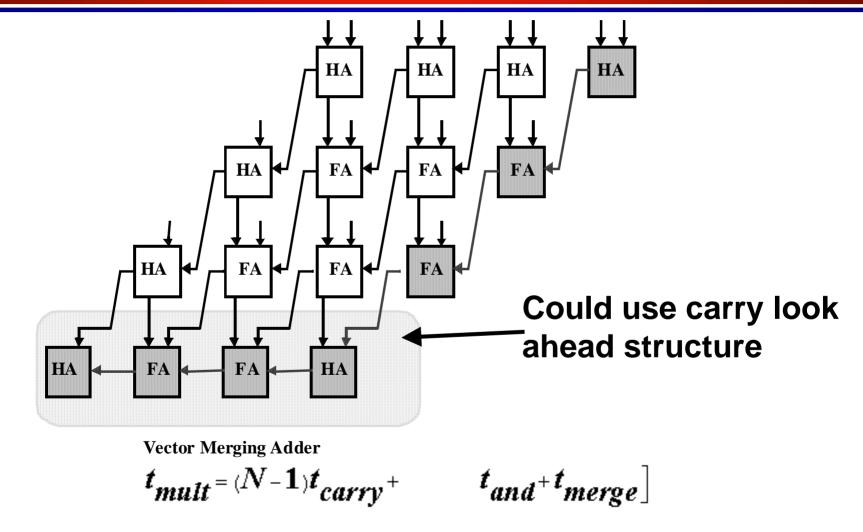
Digital Integrated Circuits

Arithmetic

Array Multiplier Reflections

- Many equal critical paths
 - » Very hard to optimize by transistor sizing
- We could pass the carry bits diagonally down instead of across
 - » Output does not change
 - » Need to add an extra stage to accommodate this

Carry Save Multiplier

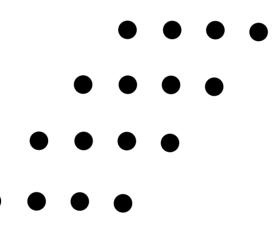


Digital Integrated Circuits

Arithmetic

The Tree Multiplier

• Note that the partial products layout looks as follows:



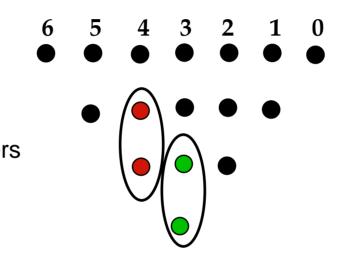
- Note that we can rearrange and add the partial products differently
- Reduce number of adder circuits and logic depth
- FA compresses 3b to 2b, HA has 2b in and 2b out

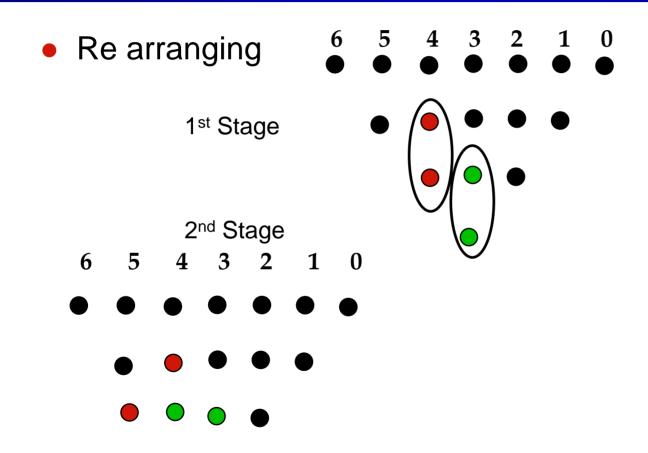
Digital Integrated Circuits

Arithmetic

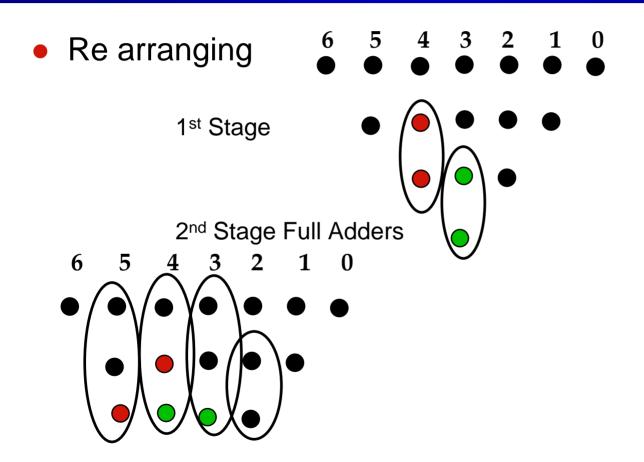
• Re arranging

1st Stage Half Adders

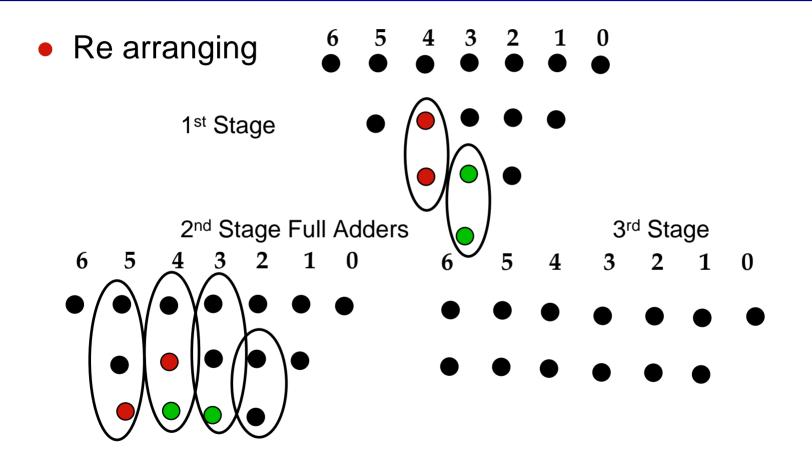


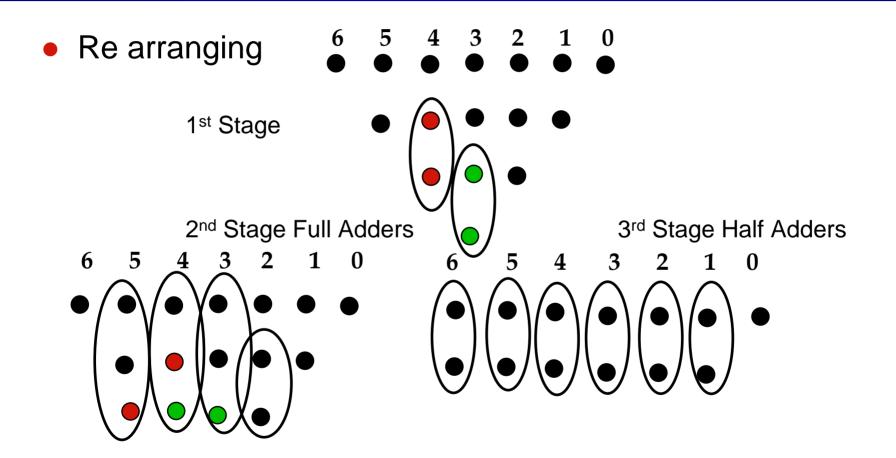


Arithmetic

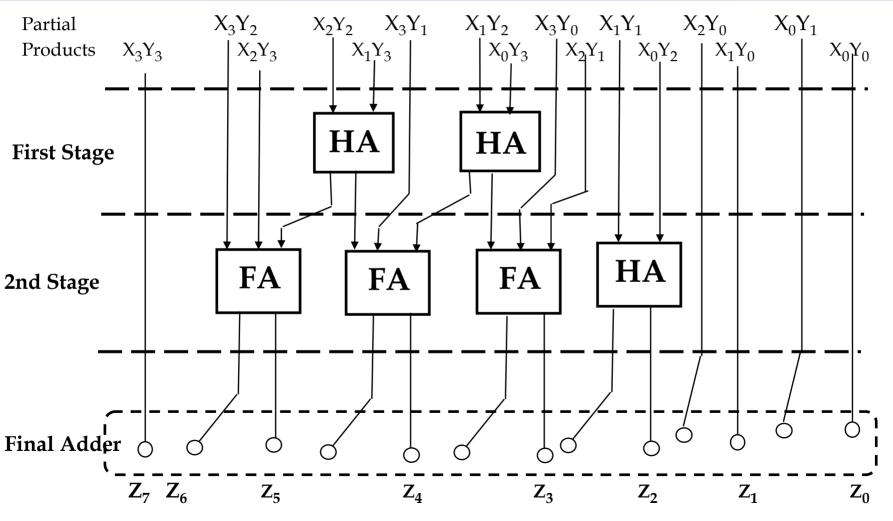


Arithmetic





Wallace-Tree Multiplier



Digital Integrated Circuits

Arithmetic

Multipliers: Summary

Optimization goals different than Adder

- » Identify critical path
- » More system level optimization then individual cell optimization