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Announcements

e Quiz 2 on Monday, April 26
« Midterm on Monday, May 3

— Covers material through Lecture (Monday 4/26)
« HW4 due Friday, 4PM in box, Kemper 2131

e Lab 3, Part 2 report due next week
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Outline

 Review: Static CMOS Logic
 Finish equivalent inverter discussion

e Combinational MOS Logic Circuits: Rabaey 6.1-
6.2, 7.1-7.3 (Kang & Leblebici, 7.1-7.4)
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Review: Static CMOS

« Complementary pullup
network (PUN) and pulldown

network (PDN) ,r
e Only one network is on at a A
a ) e B— 3 PUN
C—>
e PUN: PMOS devices
— Why? Vo = Vpp A >

. PDN: NMOS devices B—— PDN

— Why? Vo, =0V

 PUN and PDN are dual
networks
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Review: Dual Networks

* Dual networks: parallel Example: NAND gate
connection in PDN = series

connection in PUN, vice- parallel
versa — — &~
I [ or
« If CMOS gate implements 5
logic function F: ‘”i
. . 4 Series
— PUN implements function F
|
— PDN implements function G 'Ii

=F
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Review: Equivalent Inverter

 Represent complex gate as inverter for delay
estimation, VTC analysis

« Use worse-case conditions for delays

« Example: NAND gate
— Worse-case (slowest) pull-up: only 1 PMOS “on”
— Pull-down: both NMOS “on”

dq We dfl Wp —dl W,
—> -
—ﬁ Wy . EZAVA
=L W,
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Graph-Based Dual Network

« Use graph theory to help design gates
— Mostly implemented in CAD tools
 Draw network for PUN or PDN
— Circuit nodes are vertices

— Transistors are edges

dd =

gnd
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Graph-Based Dual Network (2)

 To derive dual network:
— Create new node in each enclosed region of graph
— Draw new edge intersecting each original edge

— Edge is controlled by inverted input

A —d
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Propagation Delay Analysis - The Switch Model

1
|

(a) Inverter (b) 2-input NAND (c) 2-input NOR
t, = 0.69 Ry, C_

(assuming that C; dominates!)
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Switch Level Model

e Model transistors as switches with
series resistance

* Resistance R, = average resistance
for a transition

« Capacitance C, = average load
capacitance for a transition (same as
we analyzed for transient inverter

delays)
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What is the Value of R,,?

- Depends strongly on the operating region

- For hand analysis use a fixed value of R which it the
average of the two end points of the transition

- Similar to the previous approach of averaging
currents

EXAMPLE: For t,y; for an inverter, the R, Is:

R = L\r
2

on 72))

oSV eur- Vo) T Bnaros Y out™ VoD

2\ Ip Vout = VDD Ip Vout = VoD’
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Switch Level Model Delays

Delay estimation using switch-level
model (for general RC circuit):

dVv C

|=C— - dt == dV
RN$(\:___CL dt |
] =Y L =Ry
R V
1 RC
t—t,=t, = | —aV
VOV

t, = RC[In(V,) - In(V,)|=RC |n£ﬁj
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Switch Level Model RC Delays

 For fall delay t,,, Vo=Vpp, V;=Vpp/2

t, =RClIn ://—1 =RC In %\>/DD
0 DD
t, =RCIn(0.5)
Lo = 0-09R,C, < Standard RC-delay
tp|h — 0'69RpC|_ equations from literature
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Numerical Examples
« Example resistances for 1.2 um CMOS

Viap =3V, Wileff=1 (W/ZeﬁZQ is @ minimum sized device 1.8um/0.9um)
Leﬁ = 1.2um-2( 15um)=0.9um

RAWILyg=2)=(5V /046 mA + 2.5V /0.29mA)/ 2 = 9.7 kQ (for 1)
|

RW/Lyy=1)=9.7*2=19.4KkQ (for t,57)

R (W/L,z=6)=(5V/0.57TmA +2.5V/0.24mA)/2 = 9.6 kQ (for 2, 157)

Ry(WiLgg=1)=9.6* 6 =57.6 k() (for #,1 )

SOLVE RC NETWORK TO DETERMINE DELAYS
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Analysis of Propagation Delay

Vop 1. Assume R,=R,=resistance of minimum
% R, % R, sized NMOS inverter
A \ R 2. Determine “Worst Case Input” transition
= (Delay depends on input values)

= C_ 3. Example: toLH for 2input NAND

B = - Worst case when only ONE PMOS Pulls
up the output node

- For 2 PMOS devices in parallel, the
resistance is lower

"N
Al toLy = 0.69R;C,

2-input NAND 4. Example: tyy,, for 2input NAND
- Worst case : TWO NMOS in series

tonL = 0.69(2R,)C,
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Design for Worst Case

NAND Gate

Complex Gate

Here it is assumed that R, = Ry,
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Fan-In and Fan-Out

o[ e[ df o

A o—

Beo—

Co—

Do

Fan-Out

Number of logic gates
connected to output

(2 FET gate capacitances
per fan-out)

Fan-In

Number of logical inputs
Quadratic delay term due to:
1. Resistance increasing
2.Capacitance increasing
for t,,, (series NMOS)

t, proportional to a;FI + a,FI* + a;FO
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Fast Complex Gates - Design Techniques

 Increase Transistor Sizing:
Works as long as Fan-out capacitance

domi

nates self capacitance (S/D cap increases

with increased width)
* Progressive Sizing:

Out

InN_I lf‘MN _=T

M1>M2>M3> MN

| U

1 <— Distributed RC-line
i, | [M2 = ©:

1 T Can Reduce Delay by more
I, |[Mi== G than 30%!

1=
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Fast Complex Gates - Design Techniques (2)

e Transistor Ordering
Place last arriving input closest to output node

critical path critical path
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Fast Complex Gates - Design Techniques (3)

 Improved Logic Design

-

b =

D

Note Fan-Out capacitance is the same, but Fan-In
resistance lower for input gates (fewer series FETS)
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Fast Complex Gates - Design Techniques (4)
e Buffering: Isolate Fan-in from Fan-out

-

L

Keeps high fan-in resistance isolated from large

capacitive load C,
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4 Input NAND Gate

Vbp
In1<=||fI In2a||::I330||:: |n4a|Eu¥

VDD

Iny _|
|n2_
Out
Ing
Ing |
1
GND —

IN1In2In3 In4
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Capacitances in a 4 input NAND Gate

VDD
T
Cgs;, Csb, Cosq Csb;  Cgs, Csb, Cgsq Csby
o e T e e
Cgd, Cdb, ©9% =g ] FrCdbs Cgd, Cdb,Cgd Cdb,
Vout
Cgd Cdb,
In, —_H Note that the value of Cload for calculating
o8, Csb, | propagation delay depends on which capacitances

need to be discharged or charged when the critical

Cgd Cdb,

In, ’C_-.H signal arrives.
gs Csb

° Example: In, =In;=1In,=1.1In,=0. In, switches from low

Cgd Cdb, to high. Hence, Nodes 3 and 4 are already discharged to
In; ’C_'H ground. In order for Vout to go from high to low... Vout
% CP: node and node 2 must be discharged.
Cgd cdb, CL=
In, Cgd5+Cgd7+Cgd8+2Cgd6(Miller)+Cdb5+Cdb6+Cdb7+Cd
Cos, Csb, p8+Cgdl+ Cdbl+ Cgsl+ Csbl+ 2Cgd2+ Cdb2+ Cw
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Next Topic: Sequential Logic

e Basic sequential circuits in CMOS
— RS latches, transparent latches, flip-flops
— Alternative sequential element topologies

— Pipelining
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