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Announcements

• Quiz 2 on Monday, April 26

• Midterm on Monday, May 3

– Covers material through Lecture (Monday 4/26)

• HW4 due Friday, 4PM in box, Kemper 2131

• Lab 3, Part 2 report due next week
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Outline

• Review: Static CMOS Logic

• Finish equivalent inverter discussion

• Combinational MOS Logic Circuits: Rabaey 6.1-
6.2, 7.1-7.3 (Kang & Leblebici, 7.1-7.4)
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Review: Static CMOS
• Complementary pullup

network (PUN) and pulldown
network (PDN)

• Only one network is on at a 
time

• PUN: PMOS devices
– Why? VOH = VDD

• PDN: NMOS devices
– Why? VOL = 0 V

• PUN and PDN are dual 
networks
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Review: Dual Networks

B

A F

• Dual networks: parallel 
connection in PDN = series 
connection in PUN, vice-
versa

• If CMOS gate implements 
logic function F:

– PUN implements function F

– PDN implements function G 
= F

Example: NAND gate

parallel

series
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Review: Equivalent Inverter

• Represent complex gate as inverter for delay 
estimation, VTC analysis

• Use worse-case conditions for delays
• Example: NAND gate

– Worse-case (slowest) pull-up: only 1 PMOS “on”
– Pull-down: both NMOS “on”

WN

WN

WP WP WP

½ WN



Amirtharajah/Parkhurst, EEC 118 Spring 2010 7

B

Graph-Based Dual Network

• Use graph theory to help design gates

– Mostly implemented in CAD tools

• Draw network for PUN or PDN

– Circuit nodes are vertices

– Transistors are edges

A

F

gnd

A B
F
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Graph-Based Dual Network (2)

• To derive dual network:

– Create new node in each enclosed region of graph

– Draw new edge intersecting each original edge

– Edge is controlled by inverted input

A B

A B A

B
F
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Propagation Delay Analysis - The Switch Model
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(a) Inverter (b) 2-input NAND (c) 2-input NOR

tp = 0.69 Ron CL

(assuming that CL dominates!)

= 
RON
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Switch Level Model

• Model transistors as switches with 
series resistance

• Resistance Ron = average resistance 
for a transition

• Capacitance CL = average load 
capacitance for a transition (same as 
we analyzed for transient inverter 
delays)
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What is the Value of Ron?
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Switch Level Model Delays
Delay estimation using switch-level 

model (for general RC circuit):
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Switch Level Model RC Delays

• For fall delay tphl, V0=VDD, V1=VDD/2
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equations from literature
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Numerical Examples

• Example resistances for 1.2 μm CMOS 
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Analysis of Propagation Delay
VDD

CL

F

Rp Rp

Rn

Rn
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B

2-input NAND

1. Assume Rn=Rp= resistance of minimum
 sized NMOS inverter

2. Determine “Worst Case Input” transition
(Delay depends on input values)

3. Example: tpLH for 2input NAND
- Worst case when only ONE PMOS Pulls

up the output node
- For 2 PMOS devices in parallel, the 

resistance is lower

4. Example: tpHL for 2input NAND
- Worst case : TWO NMOS in series

tpLH = 0.69RpCL

tpHL = 0.69(2Rn)CL
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Design for Worst Case
VDD
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Here it is assumed that Rp = Rn 

NAND Gate Complex Gate
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Fan-In and Fan-Out 
VDD

A B

A

B

C

D

C D

Fan-Out
Number of logic gates 
connected to output
(2 FET gate capacitances 
per fan-out)

Fan-In 
Number of logical inputs
Quadratic delay term due to:
1.Resistance increasing
2.Capacitance increasing
for tpHL (series NMOS)

tp proportional to a1FI + a2FI2 + a3FO
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Fast Complex Gates - Design Techniques

• Increase Transistor Sizing: 
Works as long as Fan-out capacitance 
dominates self capacitance (S/D cap increases 
with increased width)

• Progressive Sizing:

CL

In1

InN

In3

In2

Out

C1

C2

C3

M 1 > M 2 > M 3 > MN

M1

M2

M3

MN

Distributed RC-line

Can Reduce Delay by more 
than 30%!
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• Transistor Ordering

critical pathcritical path
Place last arriving input closest to output node

Fast Complex Gates - Design Techniques (2)
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Fast Complex Gates - Design Techniques (3)

• Improved Logic Design

Note Fan-Out capacitance is the same, but Fan-In 
resistance lower for input gates (fewer series FETs)
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Fast Complex Gates - Design Techniques (4)
• Buffering: Isolate Fan-in from Fan-out

CL
CL

Keeps high fan-in resistance isolated from large 
capacitive load CL
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4 Input NAND Gate
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Capacitances in a 4 input NAND Gate

Note that the value of Cload for calculating 
propagation delay depends on which capacitances 
need to be discharged or charged when the critical 
signal arrives.

Example: In1 = In3 = In4 = 1. In2 = 0. In2 switches from low 
to high. Hence, Nodes 3 and 4 are already discharged to 
ground. In order for Vout to go from high to low… Vout
node and node 2 must be discharged.
CL = 
Cgd5+Cgd7+Cgd8+2Cgd6(Miller)+Cdb5+Cdb6+Cdb7+Cd
b8 +Cgd1+ Cdb1+ Cgs1+ Csb1+ 2Cgd2+ Cdb2+ Cw
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Next Topic: Sequential Logic 

• Basic sequential circuits in CMOS

– RS latches, transparent latches, flip-flops

– Alternative sequential element topologies

– Pipelining
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