EEC 118 Lecture #7: CMOS Logic

Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

- Hspice documentation (html and pdf): /pkg/avanti/current/docs
- Lab 3, Part 1 reports due this week at lab section
- HW 4 due this Friday at 4 PM in box, Kemper 2131

Outline

- Review: CMOS Inverter Transient Characteristics
- Inverter Power Consumption
- Combinational MOS Logic Circuits: Rabaey 6.1 6.2 (Kang & Leblebici, 7.1-7.4)

 For CMOS (or almost all logic circuit families), only one fundamental equation necessary to determine delay:

$$I = C \frac{dV}{dt}$$

- Consider the discretized version: $I = C \frac{\Delta V}{\Delta t}$
- Rewrite to solve for delay:

$$\Delta t = C \frac{\Delta V}{I}$$

• Only three ways to make faster logic: $\downarrow C, \downarrow \Delta V, \uparrow I$

• High-to-low and low-to-high transitions (exact):

$$t_{PHL} = \frac{C_L}{k_n (V_{OH} - V_{T0,n})} \left[\frac{2V_{T0,n}}{V_{OH} - V_{T0,n}} + \ln \left(\frac{4(V_{OH} - V_{T0,n})}{V_{OH} + V_{OL}} - 1 \right) \right]$$
$$t_{PLH} = \frac{C_L}{k_p (V_{OH} - V_{OL} - |V_{T0,p}|)} \left[\frac{2|V_{T0,p}|}{V_{OH} - V_{OL} - |V_{T0,p}|} + \ln \left(\frac{4(V_{OH} - V_{OL} - |V_{T0,p}|)}{V_{OH} + V_{OL}} - 1 \right) \right]$$

- Similar exact method to find rise and fall times
- Note: to balance rise and fall delays (assuming $V_{OH} = V_{DD}$, $V_{OL} = 0V$, and $V_{T0,n} = V_{T0,p}$) requires

$$\frac{k_p}{k_n} = 1 \qquad \left(\frac{W}{L}\right)_p / \left(\frac{W}{L}\right)_n = \frac{\mu_n}{\mu_p} \approx 2.5$$

- Static power consumption (ideal) = 0
 - Actually DIBL (Drain-Induced Barrier Lowering), gate leakage, junction leakage are still present
- Dynamic power consumption

$$P_{avg} = \frac{1}{T} \int_{0}^{T} v(t) i(t) dt$$

$$P_{avg} = \frac{1}{T} \left[\int_{0}^{T/2} V_{out} \left(-C_{load} \frac{dV_{out}}{dt} \right) dt + \int_{T/2}^{T} \left(V_{DD} - V_{out} \right) \left(C_{load} \frac{dV_{out}}{dt} \right) dt \right]$$

$$P_{avg} = \frac{1}{T} \left[\left(-C_{load} \frac{V_{out}^{2}}{2} \right) \right]_{0}^{T/2} + \left(V_{DD} V_{out} C_{load} - \frac{1}{2} C_{load} V_{out}^{2} \right) \right]_{T/2}^{T}$$

$$P_{avg} = \frac{1}{T} C_{load} V_{DD}^{2} = C_{load} V_{DD}^{2} f$$

Static CMOS

- Complementary pullup network (PUN) and pulldown network (PDN)
- Only <u>one</u> network is on at a time
- PUN: PMOS devices
 - Why?
- PDN: NMOS devices

- Why?

 PUN and PDN are *dual* networks

Dual Networks

 Dual networks: parallel connection in PDN = series connection in PUN, viceversa

- If CMOS gate implements logic function F:
 - PUN implements function F
 - PDN implements function G
 F

NAND Gate

- NAND function: $F = \overline{A \cdot B}$
- PUN function: $F = \overline{A \cdot B} = \overline{A} + \overline{B}$

- "Or" function (+) \rightarrow parallel connection

– Inverted inputs \overline{A} , $\overline{B} \rightarrow PMOS$ transistors

- PDN function: $G = \overline{F} = A \cdot B$
 - "And" function (•) \rightarrow series connection
 - Non-inverted inputs \rightarrow NMOS transistors

NOR Gate

• NOR gate operation: F = A+B

Analysis of CMOS Gates

• Represent "on" transistors as resistors

- Transistors in series \rightarrow resistances in series
 - Effective resistance = 2R
 - Effective length = 2L

Analysis of CMOS Gates (cont.)

• Represent "on" transistors as resistors

- Transistors in parallel \rightarrow resistances in parallel
 - Effective resistance = $\frac{1}{2}$ R
 - Effective width = 2W

CMOS Gates: Equivalent Inverter

- Represent complex gate as inverter for delay estimation
- Typically use worst-case delays
- Example: NAND gate
 - Worst-case (slowest) pull-up: only 1 PMOS "on"
 - Pull-down: both NMOS "on"

Design CMOS gate for this truth table:

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Design CMOS gate for this logic function: $F = A^{\bullet}(B+C) = A + B^{\bullet}C$

 Find <u>N</u>MOS pulldown network diagram: G = F = A•(B+C)

Not a unique solution: can exchange order of series connection

2. Find PMOS pullup network diagram: $F = \overline{A} + (\overline{B} \cdot \overline{C})$

Not a unique solution: can exchange order of series connection (B and C inputs)

Completed gate: • What is worse-case pullup delay?

CMOS Gate Design

- Designing a CMOS gate:
 - Find pulldown NMOS network from logic function or by inspection
 - Find pullup PMOS network
 - By inspection
 - Using logic function
 - Using dual network approach
 - Size transistors using equivalent inverter
 - Find worst-case pullup and pulldown paths
 - Size to meet rise/fall or threshold requirements

• Represent "on" transistors as resistors

- Transistors in series \rightarrow resistances in series
 - Effective resistance = 2R
 - Effective width = $\frac{1}{2}$ W (equivalent to 2L)
 - Typically use minimum length devices (L = L_{min})

Analysis of CMOS Gates (cont.)

• Represent "on" transistors as resistors

- Transistors in parallel \rightarrow resistances in parallel
 - Effective resistance = $\frac{1}{2}$ R
 - Effective width = 2W
 - Typically use minimum length devices (L = Lmin)

Equivalent Inverter

- CMOS gates: many paths to Vdd and Gnd
 - Multiple values for V_{TH} , V_{IL} , V_{IH} , etc
 - Different delays for each input combination
- Equivalent inverter
 - Represent each gate as an inverter with appropriate device width
 - Include only transistors which are on or switching
 - Calculate V_{TH} , delays, etc using inverter equations

Static CMOS Logic Characteristics

• For V_{TH} , the V_{TH} of the equivalent inverter is used (assumes all inputs are tied together)

– For specific input patterns, V_{TH} will be different

- For V_{IL} and V_{IH} , only the worst case is interesting since circuits must be designed for worst-case noise margin
- For delays, both the maximum and minimum must be accounted for in race analysis

- Example: NAND gate threshold V_{TH} Three possibilities:
 - A & B switch together
 - A switches alone
 - B switches alone

• What is equivalent inverter for each case?

Equivalent Inverter: Delay

- Represent complex gate as inverter for delay estimation
- Use worse-case delays
- Example: NAND gate
 - Worse-case (slowest) pull-up: only 1 PMOS "on"
 - Pull-down: both NMOS "on"

Example: NOR gate

 Find threshold voltage V_{TH} when both inputs switch simultaneously

- Two methods:
 - Transistor equations (complex)
 - Equivalent inverter
 - Should get same answer

Completed gate: • What is worse-case pullup delay?

Transistor Sizing

- Sizing for switching threshold
 - All inputs switch together
- Sizing for delay
 - Find worst-case input combination

 Find equivalent inverter, use inverter analysis to set device sizes

Common CMOS Gate Topologies

- And-Or-Invert (AOI)
 - Sum of products boolean function
 - Parallel branches of series connected NMOS
- Or-And-Invert (OAI)
 - Product of sums boolean function
 - Series connection of sets of parallel NMOS

Graph-Based Dual Network

- Use graph theory to help design gates
 - Mostly implemented in CAD tools
- Draw network for PUN or PDN
 - Circuit nodes are vertices
 - Transistors are edges

B

Graph-Based Dual Network (2)

- To derive dual network:
 - Create new node in each enclosed region of graph
 - Draw new edge intersecting each original edge
 - Edge is controlled by inverted input

- Convert to layout using consistent Euler paths

Next Time: More Combinational Logic

- Combinational MOS Logic Transient Response
 - AC Characteristics, Switch Model