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Announcements

• Lab 3, Part 1 this week, report due next week

• Hspice documentation (html and pdf): 
/pkg/avanti/current/docs

• Lab 2 reports due this week at lab section

• HW 3 due this Friday at 4 PM in box, Kemper 
2131
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Outline

• MOS Fabrication (Lecture 5)

• Review: CMOS Inverter Transfer Characteristics

• CMOS Inverters: Rabaey 5.4-5.5 (Kang & 
Leblebici, 6.1-6.4, 6.7)
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CMOS Inverter VTC: Device Operation
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Logic Circuit Delay

• For CMOS (or almost all logic circuit families), only 
one fundamental equation necessary to determine 
delay:

• Consider the discretized version:

• Rewrite to solve for delay:

• Only three ways to make faster logic:   C,   ΔV,   I
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CMOS Inverter Capacitances
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• Assume input 
transition is fixed, 
then delay 
determined by 
output

Capacitance on 
node f (output):

• Junction cap
Cdb,p and Cdb,n

• Gate capacitance
Cgd,p and Cgd,n

• Interconnect cap
• Receiver gate cap
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CMOS Inverter Junction Capacitances
• Junction capacitances Cdb,p and Cdb,n:

– Equation for junction cap:

– Non-linear, depends on voltage across junction

– Use Keq factor to get equivalent capacitance for a 
voltage transition
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CMOS Inverter Gate Capacitances

• Gate capacitances CGD,p and CGD,n:

– Just after the input switches(t = 0+), what regions 
are transistors in?

– One is in cutoff: CGD = Overlap Cap

– One is in Saturation: CGD = Overlap Cap

– Therefore, gate-to-drain capacitance is due to 
overlap capacitance :

Doxngdpgd WLCCC == ,,

However, also need to consider Miller effect ...
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CMOS Inverter Capacitances: Miller Effect

• When input rises by ΔV, output falls by ΔV

– Change in stored charge: ΔQ = Cgd1ΔV – (-Cgd1ΔV)

– Effective voltage change across Cgd1 is  2ΔV

– Effective capacitance to ground is twice Cgd1

• Including Miller effect:

Vin

Vout
Cgd1

Vin

Vout

2Cgd1

Doxngdpgd WLCCC 2,, == (For transistor in Cutoff)
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CMOS Inverter Capacitances: Receiver

• Receiver gate capacitance

– Includes all capacitances of gate(s) connected to 
output node

– Unknown region of operation for receiver 
transistor: total gate cap varies from (2/3)WLCox to 
WLCox

– Ignore Miller effect (taken into account on output)

– Assume worst-case value, include overlap

oxDoxeffg CWLCWLC 2+=

Cg = WL Cox
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Inverter Capacitances: Analysis

• Simplify the circuit: combine all capacitances at 
output into one lumped linear capacitance:

Cload = 2*Cgd,n + 2*Cgd,p + Cdb,n + Cdb,p + Cint
+ Cg

• Csb,n = Csb,p = 0

• Cgs,n and Cgs,p are not connected to the load.  
These are part of the gate capacitance Cg

Miller effect
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First-Order Inverter Delay

• Suppose ideal voltage step at input

• Assume: Current charging or 
discharging capacitance Cload is 
nearly constant Iavg

• tPHL = Cload (Vdd - Vdd/2) / Iavg

• tPLH = Cload (Vdd/2 - Vss) / Iavg

Vin
Vout

Cload
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ID.n

Inverter Delay: Falling

• Assume PMOS fully off (ideal step input, ID,p = 0)

CloadVin

dt
dVCI

dt
dVCI

out
loadnD =

=

, Need to determine ID,n
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Inverter Delay: Falling

• From t0 to t1: NMOS in saturation

• From t1 to t2: NMOS in linear region

• Find ID in each region

Vdd
Vdd - Vtn

Vdd/2

t0 t1 t2

NMOS in saturation

NMOS in linear region
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Inverter Delay: Falling t1-t0
• Assumption: Input fast enough to go through 

transition before output voltage changes

• Vout drops from VOH to VDD-VTN (NMOS saturated)
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Inverter Delay: Falling t2-t1

• Vout drops from (VOH-VT0,n) to VDD/2
• NMOS in linear region
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Inverter Delay: Falling, Total

• Total fall delay = (t1-t0) + (t2-t1)
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Inverter Delay: Rising

• Similar calculation as for falling delay

• Separate into regions where PMOS is in linear, 
saturation

• Note: to balance rise and fall delays (assuming VOH = 
VDD, VOL = 0V, and VT0,n=VT0,p) requires
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Inverter Rise, Fall Times
• Summary -- Exact method: separate into two regions

– t1
• Vout drops from 0.9VDD to VDD-VT,n (NMOS in 

saturation)
• Vout rises from 0.1VDD to |VT,p| (PMOS in saturation)

– t2
• Vout drops from VDD-VT,n to 0.1VDD (NMOS in linear 

region)
• Vout rises from |VT,p| to 0.9 VDD (PMOS in linear 

region)
– tf,r = t1 + t2
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CMOS Inverter Delay
• Review of approximate 

method

– Assume a constant average 
current for the transition

– Iavg = average of drain 
current at beginning and end 
of transition
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CMOS Inverter Delay: 2nd Approximation
• Another approximate 

method:
– Again assume constant Iavg

– Iavg = current I1 at start of 
transition

– Why is this a good 
approximation (esp. for deep 
submicron)?
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CMOS Inverter Delay: Finite Input Transitions
• What if input has finite rise/fall time?

– Both transistors are on for some amount of time

– Capacitor charge/discharge current is reduced
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How to Improve Delay?

• Minimize load capacitances

– Small interconnect capacitance

– Small Cg of next stage

• Raise supply voltage

– Increases current faster than increased swing ΔV

• Increase transistor gain factor 

– Increase transistor drive current for 
charging/discharging output capacitance

• Use low threshold voltage devices

– More subthreshold leakage power dissipation
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Inverter Power Consumption

• Static power consumption (ideal) = 0

– Actually DIBL (Drain-Induced Barrier Lowering), 
gate leakage, junction leakage are still present

• Dynamic power consumption
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Next Time: Combinational Logic 

• Combinational MOS Logic

– DC Characteristics, Equivalent Inverter method

– AC Characteristics, Switch Model
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