Announcements

• Lab 3 this week, report due next week

• HW 3 due this Friday at 4 PM in box, Kemper 2131

• Quiz 1 today!
Outline

• Review: CMOS Inverter Transfer Characteristics

• CMOS Inverters: Rabaey 5.3-5.5 (Kang & Leblebici, 5.1-5.3 and 6.1-6.2)

• MOS Fabrication: Rabaey Chapter 2 (Kang & Leblebici, Chapter 2)
Review: CMOS Inverter Operation

• NMOS transistor:
- Cutoff if $V_{in} < V_{TN}$
- Linear if $V_{out} < V_{in} - V_{TN}$
- Saturated if $V_{out} > V_{in} - V_{TN}$

• PMOS transistor
- Cutoff if $(V_{in} - V_{DD}) < V_{TP} \rightarrow V_{in} < V_{DD} + V_{TP}$
- Linear if $(V_{out} - V_{DD}) > V_{in} - V_{DD} - V_{TP} \rightarrow V_{out} > V_{in} - V_{TP}$
- Sat. if $(V_{out} - V_{DD}) < V_{in} - V_{DD} - V_{TP} \rightarrow V_{out} < V_{in} - V_{TP}$
Review: CMOS Inverter VTC Operation

- P linear
- N cutoff
- P cutoff
- N linear
- N sat
- P sat
- P linear
- N sat
- P sat
- N linear

$$V_{out} = V_{in} - V_{T0,p}$$

$$V_{out} = V_{in} - V_{T0,n}$$

- nMOS in saturation
- pMOS in saturation

Amirtharajah/Parkhurst, EEC 118 Spring 2010
Review: CMOS Inverter VTC Sizing

- Increase W of PMOS
 - k_p increases
 - VTC moves to right

- Increase W of NMOS
 - k_n increases
 - VTC moves to left

- For $V_{TH} = V_{DD}/2$
 - $k_n = k_p$
 - $2W_n$ or $3W_n \approx W_p$
Preview: Dynamic Positive Edge-Triggered FF

- No feedback devices
- Data stored on input capacitances of inverters I0 and I1
- Dynamic logic issues apply: leakage, capacitive coupling, charge sharing
Preview: Static Latch Bistability

\[V_{i1} \]
\[V_{o1} = V_{i2} \]
\[V_{o2} \]

\[V_{i1} = V_{o2} \]

\[V_{i2} = V_{o1} \]

C (metastable)
Preview: Transmission Gate Positive Latch

![Diagram of Transmission Gate Positive Latch]

- **Clk**
- **D**
- **Q**
Preview: NMOS Pass Gate Positive Latch

- Fewer devices, less area, lower clock load
- Threshold drop on internal nodes implies more static power, less noise margin
Fabrication Process

• Substrate is grown and then cut
 – Round silicon wafers are used
 – Purity emphasized to prevent impurities from affecting operation (99.9999% pure)

• Each layer deposited separately

• Some layers used as masks for later layers

• Planar process is important
 – Requires minimum percent usage of metal to ensure flatness
Silicon Substrate Manufacturing
Building a Golf Course with Similar Process

- Plane drops materials from the air
 - Sand, then dirt, then grass seeds, then trees
 - Certain masks applied during process to prevent material from hitting particular areas
 - For instance: After Sand, mask placed over areas where sand trap will exist. Mask later taken off at end of process to reveal sand trap.
Fabrication: Patterning of SiO₂ Step I

- **Grow SiO₂ on Si by exposing to O₂**
 - High temperature accelerates this process

- **Cover surface with photoresist (PR)**
 - Sensitive to UV light (wavelength determines feature size)
 - Positive PR becomes soluble after exposure
 - Negative PR becomes insoluble after exposure
Fabrication: Patterning of SiO₂ Step II

- Exposed PR removed with a solvent
- SiO₂ removed by etching (HF – hydrofluoric acid)
- Remaining PR removed with another solvent
NMOS Transistor Fabrication

- Thick field oxide grown
- Field oxide etched to create area for transistor
- Gate oxide (high quality) grown
NMOS Transistor Fabrication

- Polysilicon deposited (doped to reduce resistance R)
- Polysilicon etched to form gate
- Gate oxide etched from source and drain
 - Self-aligned process because source/drain aligned by gate
- Si doped with donors to create n+ regions
NMOS Transistor Fabrication

- Insulating SiO₂ grown to cover surface/gate
- Source/Drain regions opened
- Aluminum evaporated to cover surface
- Aluminum etched to form metal1 interconnects
Inverter Fabrication: Layout

• **Inverter**
 – Logic symbol
 – CMOS inverter circuit
 – CMOS inverter layout (top view of lithographic masks)
Inverter Fabrication: NWELL and Oxides

- N-wells created
- Thick field oxide grown surrounding active regions
- Thin gate oxide grown over active regions
Inverter Fabrication: Polysilicon

- Polysilicon deposited
 - Chemical vapor deposition (Places the Poly)
 - Dry plasma etch (Removes unwanted Poly)
Inverter Fabrication: Diffusions

- N+ and P+ regions created using two masks
 - Source/Drain regions
 - Self-aligned process since gate is already fabricated
 - Substrate contacts
Inverter Fabrication

- Insulating SiO$_2$ deposited using chemical vapor deposition (CVD)
- Source/Drain/Substrate contacts exposed
• Metal (Al, Cu) deposited using evaporation
• Metal patterned by etching
• Copper is current metal of choice due to low resistivity
NWELL MOS Process

- MOS transistors use PN junctions to isolate different regions and prevent current flow.

- NWELL is used in P-substrate so that PMOS transistors are isolated and don’t share currents.
More Complex Processes

• **Twin Well CMOS Process**
 - Can help to avoid body effect
 - Allows for V_t and channel transconductance tuning
 - Requires extra processing steps (more costly)
Silicon-On-Insulator (SOI) Process

- Both transistors built on insulating substrate
 - Allows for tight compaction of design area
 - Some of the parasitic capacitances seen in bulk CMOS disappear
 - Wafer cost is high (IBM produces SOI, Intel doesn’t)
Accounting for VDSM Effects

• VDSM = Very Deep Sub Micron
 – Effects significant below 0.25 μm (0.18 μm, 130 nm, 90 nm, 65 nm, 45 nm)

• Compensation made at the mask level
 – OPC – Optical Proximity Correction
 – Occurs when different mask layers don’t align properly
 – Test structures are used to characterize the process
 – Ability to adapt depends on the consistency of the error from process run to process run
Accounting for VDSM Effects: OPC

WITHOUT OPC

WITH OPC

NO Common Dense/Iso CD0 Window!!!

Common Dense/Iso CD1 Window

Dense CD0 Window

Dense CD1 Window

Iso CD0 Window

Iso CD1 Window

FOCUS
Accounting for VDSM Effects: Example

- Example of 2D OPC effects: rounded edges, narrowed lines
Compensating for VDSM Effects: Masks

Layout → Mask → Silicon
Compensating for VDSM Effects: CAD

- Flow to compensate is transparent to layout designer
- Layout design proceeds as normal

Mentor Graphics Flow

References

• “Design of VLSI Systems”. A web based course located at: http://turquoise.wpi.edu/webcourse/

• Mark Anders and Jim Schantz of Intel Corporation

• Jan Rabaey, Lecture notes from his book “Digital Integrated Circuits, A Design Perspective”
Next Time: AC Characteristics

• CMOS Inverters
 – AC Characteristics: Designing for speed

• Combinational MOS Logic