EEC 118 Lecture #5: MOS Fabrication

Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

- Lab 3 this week, report due next week
- HW 3 due this Friday at 4 PM in box, Kemper 2131
- Quiz 1 today!

Outline

- Review: CMOS Inverter Transfer Characteristics
- CMOS Inverters: Rabaey 5.3-5.5 (Kang & Leblebici, 5.1-5.3 and 6.1-6.2)
- MOS Fabrication: Rabaey Chapter 2 (Kang & Leblebici, Chapter 2)

Review: CMOS Inverter Operation

- NMOS transistor:
 - Cutoff if V_{in} < V_{TN}
 - Linear if $V_{out} < V_{in} V_{TN}$
 - Saturated if $V_{out} > V_{in} V_{TN}$
- PMOS transistor

- Cutoff if $(V_{in}-V_{DD}) < V_{TP} \rightarrow V_{in} < V_{DD}+V_{TP}$
- Linear if (V_{out}-V_{DD})>V_{in}-V_{DD}-V_{TP} \rightarrow V_{out}>V_{in} V_{TP}
- Sat. if (V_{out}-V_{DD})<V_{in}-V_{DD}-V_{TP} \rightarrow V_{out} < V_{in}-V_{TP}

Review: CMOS Inverter VTC Operation

Amirtharajah/Parkhurst, EEC 118 Spring 2010

Review: CMOS Inverter VTC Sizing

Preview: Dynamic Positive Edge-Triggered FF

- No feedback devices
- Data stored on input capacitances of inverters I0 and I1
- Dynamic logic issues apply: leakage, capacitive coupling, charge sharing

Preview: Static Latch Bistability

Preview: Transmission Gate Positive Latch

Preview: NMOS Pass Gate Positive Latch

- Fewer devices, less area, lower clock load
- Threshold drop on internal nodes implies more static power, less noise margin

- Substrate is grown and then cut
 - Round silicon wafers are used
 - Purity emphasized to prevent impurities from affecting operation (99.9999% pure)
- Each layer deposited separately
- Some layers used as masks for later layers
- Planar process is important
 - Requires minimum percent usage of metal to ensure flatness

Silicon Substrate Manufacturing

Building a Golf Course with Similar Process

- Plane drops materials from the air
 - Sand, then dirt, then grass seeds, then trees
 - Certain masks applied during process to prevent material from hitting particular areas
 - For instance: After Sand, mask placed over areas where sand trap will exist. Mask later taken off at end of process to reveal sand trap.

Fabrication: Patterning of SiO₂ Step I

Grow SiO₂ on Si by exposing to O₂

- High temperature accelerates this process
- Cover surface with photoresist (PR)
 - Sensitive to UV light (wavelength determines feature size)
 - Positive PR becomes soluble after exposure
- Negative PR becomes insoluble after exposure Amirtharajah/Parkhurst, EEC 118 Spring 2010

Fabrication: Patterning of SiO₂ Step II

- Exposed PR removed with a solvent
- SiO₂ removed by etching (HF hydrofluoric acid)
- Remaining PR removed with another solvent

NMOS Transistor Fabrication

- Thick field oxide grown
- Field oxide etched to create area for transistor
- Gate oxide (high quality) grown

NMOS Transistor Fabrication

- Polysilicon deposited (doped to reduce resistance R)
- Polysilicon etched to form gate
- Gate oxide etched from source and drain
 - Self-aligned process because source/drain aligned by gate
- Si doped with donors to create n+ regions

NMOS Transistor Fabrication

- Insulating SiO₂ grown to cover surface/gate
- Source/Drain regions opened
- Aluminum evaporated to cover surface
- Aluminum etched to form metal1 interconnects

Inverter Fabrication: Layout

- Inverter
 - Logic symbol
 - CMOS inverter circuit
 - CMOS inverter layout (top view of lithographic masks)

Inverter Fabrication: NWELL and Oxides

- N-wells created
- Thick field oxide grown surrounding active regions
- Thin gate oxide grown over active regions

Inverter Fabrication: Polysilicon

- Polysilicon deposited
 - Chemical vapor deposition (Places the Poly)
 - Dry plasma etch (Removes unwanted Poly)

Inverter Fabrication: Diffusions

- N+ and P+ regions created using two masks
 - Source/Drain regions
 - Self-aligned process since gate is already fabricated
 - Substrate contacts

Inverter Fabrication

- Insulating SiO₂ deposited using chemical vapor deposition (CVD)
- Source/Drain/Substrate contacts exposed

Inverter Fabrication

- Metal (AI, Cu) deposited using evaporation
- Metal patterned by etching
- Copper is current metal of choice due to low resistivity

NWELL MOS Process

- MOS transistors use PN junctions to isolate different regions and prevent current flow.
- NWELL is used in Psubstrate so that PMOS transistors are isolated and don't share currents.

Twin Well CMOS Process

- Can help to avoid body effect
- Allows for Vt and channel transconductance tuning
- Requires extra processing steps (more costly)

Silicon-On-Insulator (SOI) Process

- Both transistors built on insulating substrate
 - Allows for tight compaction of design area
 - Some of the parasitic capacitances seen in bulk CMOS disappear
 - Wafer cost is high (IBM produces SOI, Intel doesn't)

Accounting for VDSM Effects

- VDSM = Very Deep Sub Micron
 - Effects significant below 0.25 μm (0.18 μm , 130 nm, 90 nm, 65 nm, 45 nm)
- Compensation made at the mask level
 - OPC Optical Proximity Correction
 - Occurs when different mask layers don't align properly
 - Test structures are used to characterize the process
 - Ability to adapt depends on the consistency of the error from process run to process run

Accounting for VDSM Effects: OPC

Accounting for VDSM Effects: Example

 Example of 2D OPC effects: rounded edges, narrowed lines

Uncorrected

Corrected

Compensating for VDSM Effects: Masks

Compensating for VDSM Effects: CAD

- Flow to compensate is transparent to layout designer
- Layout design proceeds as normal

Mentor Graphics Flow

http://www.mentor.com/calibre/datasheets/opc/html/

- "Design of VLSI Systems". A web based course located at: http://turquoise.wpi.edu/webcourse/
- "Simplified Rule Generation for Automated Rules-Based Optical Enhancement", Otto et. al. On web at:

http://www.jetlink.net/~ootto/bacus95/BACUS95In dex.html

- Mark Anders and Jim Schantz of Intel Corporation
- Jan Rabaey, Lecture notes from his book "Digital Integrated Circuits, A Design Perspective"

Next Time: AC Characteristics

- CMOS Inverters
 - AC Characteristics: Designing for speed
- Combinational MOS Logic