EEC 118 Lecture #3: Inverters

Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Outline

- Review: MOSFET Regimes of Operation
- Lecture 2: Scaling, Parasitic Capacitances
- Inverter Operation: Rabaey 1.3.2, 5 (Kang & Leblebici, 5.1-5.3 and 6.1-6.2)

Review: MOS Transistor Structure

- Important transistor physical characteristics
 - Channel length $L = L_D 2x_d$ (K&L L = Lgate 2L_D)
 - Channel width W

Saturation:
$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Linear (Triode, Ohmic):

$$I_D = \mu C_{ox} \frac{W}{L} \left(\left(V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

Cutoff: $I_D \approx 0$

"Classical" MOSFET model, will discuss deep submicron modifications as necessary (Rabaey, Eqs. 3.25, 3.29)

MOS Transistor Symbols

Note on MOS Transistor Symbols

- All symbols appear in literature
 - Symbols with arrows are conventional in analog papers
 - PMOS with a bubble on the gate is conventional in digital circuits papers
- Sometimes bulk terminal is ignored implicitly connected to source or appropriate supply rail:

 Unlike physical bipolar devices, source and drain are usually symmetric

Inverter Operation

Inverter is simplest digital logic gate (1 input, 1 output)

- Many different circuit styles possible
 - Resistive-load
 - NMOS and Pseudo-NMOS
 - CMOS
- Important static and dynamic characteristics
 - Speed (delay through the gate)
 - Power consumption
 - Robustness (tolerance to noise)
 - Area and process cost

Inverter Model: Voltage Transfer Curve

Voltage transfer curve (VTC): plot of output voltage Vout vs. input voltage Vin

- V_{OH} and V_{OL} represent the "high" and "low" output voltages of the inverter
- V_{OH} = output voltage when Vin = '0' (<u>V O</u>utput <u>H</u>igh)
- V_{OL} = output voltage when Vin = '1' (<u>V O</u>utput <u>L</u>ow)
- Ideally,

$$-V_{OH} = Vdd$$

$$-V_{OL} = 0 V$$

VOL and VOH

In transfer function terms:

$$- V_{OL} = f(V_{OH})$$

$$-V_{OH} = f(V_{OL})$$

- f = inverter transfer function
- Difference (V_{OH}-V_{OL}) is the voltage swing of the gate
 - Full-swing logic swings from ground to Vdd
 - Other families with smaller swings

Inverter Switching Threshold

Inverter switching threshold:

- Point where voltage transfer curve intersects line Vout=Vin
- Represents the point at which the inverter switches state
- Normally, $V_M \approx Vdd/2$
- Sometimes other thresholds desirable

$$(K\&L V_{TH} = V_M)$$

Noise Margins

- V_{IL} and V_{IH} measure effect of input voltage on inverter output
- V_{IL} = largest input voltage recognized as logic '0'
- V_{IH} = smallest input voltage recognized as logic '1'
- Defined as point on VTC
 where slope = -1

Noise Margins and Robustness

Ideally, noise margin should be as large as possible • Noise margin is a measure of the *robustness* of an inverter

$$- N_{ML} = V_{IL} - V_{OL}$$

$$-$$
 N_{MH} $=$ V_{OH} $-$ V_{IH}

- Models a chain of inverters. Example:
 - First inverter output is V_{OH}
 - Second inverter recognizes
 input > V_{IH} as logic '1'
 - Difference V_{OH}-V_{IH} is "safety zone" for noise

Noise Margin Motivation

- Why are V_{IL} , V_{IH} defined as unity-gain point on VTC curve?
 - Assume there is noise on input voltage V_{in}

$$V_{out} = f\left(V_{in} + V_{noise}\right)$$

- First-order Taylor series approximation:

$$V_{out} = f(V_{in}) + \frac{dV_{out}}{dV_{in}} V_{noise}$$

- If gain $(dV_{out}/dV_{in}) > 1$, noise will be amplified.
- If gain < 1, noise is filtered. Therefore V_{IL}, V_{IH} define regions where gain < 1

Inverter Time Response

 Propagation delay measured from 50% point of Vin to 50% point of Vout

•
$$t_{phl} = t_1 - t_0$$
, $t_{plh} = t_3 - t_2$, $t_p = \frac{1}{2}(t_{phl} + t_{plh})$

Rise and Fall Time

- Fall time: measured from 90% point to 10% point $t_F = t_1 t_0$
- Rise time: measured from 10% point to 90% point $t_R = t_3 t_2$
- Alternately, can define 20%-80% rise/fall time

Ring Oscillator

- *Ring oscillator circuit*: standard method of comparing delay from one process to another
- Odd-number n of inverters connected in chain: oscillates with period T (usually n >> 5)

18

Resistive Load Inverter

• Resistor pulls up to Vdd (V_{OH}), NMOS pulls down (V_{OL})

NMOS Inverter

• Depletion NMOS always on, sourcing static current

Inverter as Amplifier

- For V_{in} between V_{IL} and V_{IH} , inverter gain > 1
- Acts as a linear amplifier (often very high gain)
- Logic levels '0' and '1' correspond to saturating amplifier output (output is pegged to high or low supply)
- Resistive load inverter same circuit as <u>common</u> <u>source amplifier</u>

Next Topic: CMOS Inverters

- CMOS Inverters
 - DC Characteristics: Sizing
 - AC Characteristics: Designing for speed