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Outline

 Review and Finish: Low Power Design

* Interconnect Effects: Rabaey Ch. 4 and Ch. 9
(Kang & Leblebici, 6.5-6.6)
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Interconnect Modeling

« Early days of CMOS, wires could be treated as ideal for
most digital applications, not so anymore!

 On-chip wires have resistance, capacitance, and
inductance

— Similar to MOSFET charging, energy depends solely on
capacitance

— Resistance might impact low power adiabatic charging,
static current dissipation, speed

— Ignore inductance for all but highest speed designs

* Interconnect modeling is whole field of research itself!
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Interconnect Models: Regions of Applicability

 For highest speed applications, wire must be treated as
a transmission line

— Includes distributed series resistance, inductance,
capacitance, and shunt conductance (RLGC)

 Many applications it is sufficient to use lumped
capacitance (C) or distributed series resistance-

capacitance model (RC)

* Valid model depends on ratio of rise/fall times to time-
of-flight along wire

— |: wire length
— V: propagation velocity (speed of light)
— |/v: time-of-flight on wire
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Interconnect Models: Regions of Applicability

* Transmission line modeling (inductance significant):
1:rise (tfall) <2.5X (I /V)
 Either transmission line or lumped modeling:

25X (11 V) <t (ty) <5x(/V)

rs
 Lumped modeling:

1:rise (tfall) > 9 X (I / V)
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Resistance

 Resistance proportional to length and inversely
proportional to cross section

 Depends on material constant resistivity p ((2-m)

]

R=P-_PE_p -~ R =P
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Amirtharajah, EEC 118 Spring 2010



Parallel-Plate Capacitance

 Width large compared to dielectric thickness, height
small compared to width: E field lines orthogonal to
substrate

t1 : L
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Fringing Field Capacitance

« When height comparable to width, must account for
fringing field component as well

] ﬁHHHHHH dilectric
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Total Capacitance Model

When height comparable to width, must account for
fringing field component as well

Model as a cylindrical conductor above substrate

dielectric t
< > < W >

_|_

h \ L

substrate
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Total Capacitance Model

« Total capacitance per unit length is parallel-plate (area)
term plus fringing-field term:

&, t 2re,
h 2 ) log(2h/t +1)

 Model is simple and works fairly well (Rabaey, 2" ed.)
— More sophisticated numerical models also available

 Process models often give both area and fringing (also
known as sidewall) capacitance numbers per unit
length of wire for each interconnect layer

Amirtharajah, EEC 118 Spring 2010 11



Alternative Total Capacitance Models

 For wide lines (w 2 t/2) Kang & Leblebici Eq. 6.53:

Cz%(W—;jl : 27, :
In 1+2—h+ Zh(2h+2j
L t t Lt )
 For narrow lines (w = t/2) Kang & Leblebici Eq. 6.54:
2 (1—0.054321&
c= +1.47¢,

h
In[1+2h+ 2h(2h+2j)
t t t
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Capacitive Coupling

* Fringing fields can terminate on adjacent conductors
as well as substrate

 Mutual capacitance between wires implies crosstalk,
affects data dependency of power

dielectric

AP L
G

substrate
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Miller Capacitance

« Amount of charge moved onto mutual capacitance
depends on switching of surrounding wires

« When adjacent wires move in opposite direction,
capacitance is effectively doubled (Miller effect)

P

v AQ=C, |V, V)
_/_ B_D i :Cm(VDD_(_VDD))
V ::Cm =2C Voo
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Data Dependent Switched Capacitance 1

« When adjacent wires move in same direction, mutual
capacitance is effectively eliminated

AIBICl or AIBICI C_. =0

Al BICl or AIBICI C =4C_

Al B Cl or Al B} Ct
| or Al BICI
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Data Dependent Switched Capacitance 2

« When adjacent wires are static, mutual capacitance is

effectively to ground

0BI10
1B10
0BI1
1Bl1

OR

OR
OR

OR

1B!
0B!
1B!
0BI0

O

Ceff — 2Cm

« Remember: it is the charging of capacitance where we
account for energy from supply, not discharging
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L
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o Simplest model

umped RC Model
R

_—C

N

used to represent the resistive and

capacitive interconnect parasitics

 Propagation delay (same as FET switch model):
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RC T-Model
R/2 R/2

« Significantly improves accuracy of transient
behavior over the lumped RC model

o Useful if simulation time is a bottleneck, much
simpler than fully distributed model
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Distributed RC Model

R/N R/N R/N
AN~ AN —— AN —

—C/N —CIN —CIN
N N N

 Elmore delay approximation for RC ladder network:

RC
tDN :7 as N‘)OO
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Repeater Insertion to Reduce Wire Delay

 Insert inverters along long wires at regular intervals

 Breaks up resistance and capacitance, reducing delay
dramatically

Amirtharajah, EEC 118 Spring 2010 20



Summary

 Many important effects to consider in interconnect design

— Resistance, capacitance, inductance can all affect signal
performance

— Long rise/fall time signals, only resistance and capacitance
needs to be considered

» Several models useful for RC interconnect delay analysis

— Simple lumped (1 R, 1 C) model: easy to analyze and/or
simulate, will be pessimistic

—T-model (2 Req = R/2, 1 C): more accurate than lumped

— Distributed model (N R, = R/N, N C,, = C/N): most accurate,
use Elmore delay approximation for hand analysis
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Next Topic: Design for Manufacturability

 Parameter variations in CMOS digital circuits

* Yield maximization and worst-case design
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