EEC 118 Lecture #13: Memories

Rajeevan Amirtharajah University of California, Davis

> Jeff Parkhurst Intel Corporation

Outline

- Review: Dynamic MOS Logic Circuits: Rabaey 6.3 (Kang & Leblebici, 9.4-9.6)
- Memories: Rabaey 12.1-12.2 (Kang & Leblebici, 10.1-10.6)

Review: Dynamic CMOS

• Operation

- Clk low during Pre-charge
 - Mp is on while Mn is off
 - Output charged to Vdd
- Clk high during evaluate
 - Mn is on while Mp is off
 - Output pulled down according to PDN function

• PDN design same as static CMOS

Review: Dynamic CMOS Tradeoffs

• Advantages:

- Faster why?
 - Reduced input load
 - No switching contention
- Less layout area

• Disadvantages:

- Multiple stage issues
- Charge leakage
- Charge sharing
- Capacitive coupling
- Cannot be cascaded
- Complicated timing/clocking
- Higher power
- Lower noise margins
- Does not scale well with process

Memory and Performance Trend I

- Memory is becoming a key factor in the performance of a computer
- 1st generation computers had just system memory
 - Very slow DRAM
 - As microprocessors got faster, the bottleneck in performance was data access
- 2nd generation computers added cache memory
 - This provided faster access to small localized memory that was being read or written
 - Memory placed on front side bus (off-chip)
 - Performance increased
 - As processors got faster memory access again became the bottleneck

Memory and Performance Trend II

- 3rd generation computers added on chip cache
 - These caches started out 16K and were termed level 1 cache
 - Soon we had level 1 and level 2 cache
 - Currently we have three levels of cache on chip that run at processor frequency, then access main memory if data can't be found in any of these caches
 - Moving to stacking memory die on top of processor

- ROM: read-only memory
 - Non-volatile mask programmed
- RWM: read-write memory (RAM, random access memory)
 - SRAM: static memory
 - Data is stored as the state of a bistable circuit
 - State is retained without refresh as long as power is supplied
 - DRAM: dynamic memory
 - Data is stored as a charge on a capacitor
 - State leaks away, refresh is required

Types of Memory II

- NVRWM: non-volatile read-write memory (also called NVRAM, non-volatile random access memory)
 - Flash (EEPROM): ROM at low voltages, writable at high voltages (Electrically Erasable Programmable Read-Only Memory)
 - EPROM: ROM, but erasable with UV light (falling out of common usage)

Memory Usage in Computers

- DRAM Memory
 - Main memory storage. Used for data and programs
- SRAM Memory
 - Faster than DRAM, however, uses more transistors
 - Used to be used for external cache
 - Variant used in internal cache (on chip cache)
- FLASH Memory and ROM
 - Used for BIOS data storage in PCs
 - Also used to store pictures, MP3 files for digital cameras and MP3 players – eventually for hard disk

Basic Memory Array Structure

 Memory cells () arranged in a rectangular array Rows correspond A_0 to data words Accessed through Memory Array a row decoder 2^N bits Columns to A_{k-1} individual bits Selected through a column mux $2^{k} - 1_{0}$ 2^{N-k} - Bit voltage $A_k \dots A_{N-1}$ amplified by sense (N-k)amplifier

Memory Circuit Operation

- <u>Wordlines</u> (WL) control row (word) access
 - Usually control gates of pass transistors
- <u>Bitlines</u> (BL) route column data (individual bits)
 - Bitlines usually precharged high (like dynamic logic)
 - Memory cells discharge bitline depending on stored data (bitline left high if cell stores 1, bitline discharged if cell stores 0)
 - Bitline swings usually small (10s 100s of mV) and must be amplified by sense amplifiers
 - Synchronous or asynchronous timing can be used
- Memory <u>cells</u> store data value
 - Static vs. dynamic, single or multiple bits, etc.

DRAM

- Smaller cell size (1 transistor or 1T cell)
 - Reason for inexpensive memory in computers
 - Tradeoff of area (memory density) vs. speed and complexity (refreshing)

DRAM Issues

- Must be periodically refreshed
 - Reads are destructive (modify voltage stored on capacitor)
 - Every read followed by a refresh of the bit (write back of read value)
- No static power dissipation
- Output voltage is charge sharing result of storage capacitor and bitline capacitance
 - More complex sense amplifiers
 - Higher noise susceptibility
- Requires different CMOS process than high performance logic
 - Not compatible with cache in microprocessors

Advanced DRAM Process

Vertical transistor, trench capacitor (Beintner, JSSC 04)

ROM

- Dotted lines refer to either set at '1' or '0'
 - PROM: Replace dotted lines with fuses
- Small cell size (1T cell)
- Not necessary to refresh
- No static power dissipation
- Output voltage is set by WL duration

SRAM Cell

- Cross-coupled inverters: bistable element
- Density is important in memories
 - Single NMOS pass transistor used for reading/writing
 - Transistor sizes should take up minimum area
- Faster than DRAM since typically fewer cells
- No refresh required (nondestructive reads)

SRAM Design: Read "0"

- Prior to read operation, voltage at node Q = 0V and Q = Vdd, bit lines precharged to Vdd
- Transistors M3 and M4 are turned on by word line (WL) select circuitry

SRAM Design: Read "0"

- Transistors M3 and M4 are turned on by WL line select circuitry
 - Cc = Vdd to start...capacitance discharges through M1.
 - Need to make sure the ratio between M1 and M3 does not allow Q to go above Vtn.
 - Otherwise node \overline{Q} accidentally discharged
 - Conservative since there will also be charge sharing at that node as well between small internal node capacitance and large bitline capacitance
 - Sense amp detects that node Q was a stored 0 due to the minor drop of voltage on the bitline

- Data must not be destroyed when bitline voltage different than storage node
 - V_Q must not exceed the threshold of the inverter (assumed to be $V_{DD}/2$), more conservative to keep it below V_{TN}
- Assume V_{BL} initially remains at V_{DD}: M3 in saturation, M1 in linear $\frac{k_{n,3}}{2} \left(V_{DD} - V_Q - V_{TN} \right)^2 = \frac{k_{n,1}}{2} \left(2 \left(V_{DD} - V_{TN} \right) V_Q - V_Q^2 \right)$ $\frac{k_{n,3}}{k_{n,1}} = \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{I}\right)_3} < \frac{2(V_{DD} - 1.5V_{TN})V_{TN}}{(V_{DD} - 2V_{TN})^2} \quad \begin{array}{l} \text{Guarantee V}_{\text{Q}} < \text{V}_{\text{TN}}, \\ \text{plug into I}_{\text{D}} \text{ equations:} \\ \text{I}_{\text{D3}} < \text{I}_{\text{D1}} \text{ at V}_{\text{Q}} = \text{V}_{\text{TN}} \end{array}$

SRAM Design: Write "0" (1st Analysis)

- Data must be forced into the cell
 - $-V_Q$ must fall below the threshold of the <u>inverter</u> to turn M2 off.
 - This allows $\overline{V_Q}$ to go high enough to go above the Vt of M1
 - This discharges node Q and stores a 0
- Assume V_{BL} remains at OV: M3 linear, M5 linear (V_Q=V_{DD}/2) Amirtharajah/Parkhurst, EEC 118 Spring 2010

SRAM Design: Write "0" (1st Analysis)

• Conditions for this to happen: requires M5 to M3 ratio to be relatively small ($V_{DS} = V_Q = V_{DD}/2$)

$$\frac{k_{p,5}}{2} \left(\left(V_{DD} - \left| V_{TP} \right| \right) V_{DD} - \frac{V_{DD}^{2}}{4} \right) = \frac{k_{n,3}}{2} \left(\left(V_{DD} - V_{TN} \right) V_{DD} - \frac{V_{DD}^{2}}{4} \right)$$

SRAM Design: Write "0" (1st Analysis)

SRAM Design: Write "0" (2nd Analysis)

- Data must be forced into the cell
 - $-V_Q$ must fall below the threshold of the <u>NMOS</u> (turns M2 off).
 - This allows $\overline{V_Q}$ to go high enough to go above the Vt of M1
 - This discharges node Q and stores a 0
- Assume V_{BL} remains at 0V: M5 sat., M3 linear (V_Q = V_{TN}) Amirtharajah/Parkhurst, EEC 118 Spring 2010

SRAM Design: Write "0" (2nd Analysis)

• Desired current conditions, want $V_Q < V_{TN}$ (M3 lin., M5 sat.):

$$\frac{k_{n,3}}{2} \left(2 \left(V_{DD} - V_{TN} \right) V_{TN} - V_{TN}^2 \right) = \frac{k_{p,5}}{2} \left(0 - V_{DD} - V_{TP} \right)^2$$

SRAM Design: Write "0" (2nd Analysis)

• Required sizing (make M5 relatively weaker than 1st case):

$$\frac{\left(\frac{W}{L}\right)_{5}}{\left(\frac{W}{L}\right)_{3}} < \frac{k_{n}'}{k_{p}'} \frac{2(V_{DD} - 1.5V_{TN})V_{TN}}{\left(V_{DD} + V_{TP}\right)^{2}}$$

Flash Memory Transistor With Floating Gate

Flash Memory Operation

- Two threshold voltages correspond to two states (1 bit)
 - -Bitline is precharged high before a read
 - Low V_T state, when wordline (control gate) is high the bitline is discharged and a "0" is read
 - High V_T state, the wordline (control gate) can't go high enough to turn on transistor, bitline stays high and a "1" is read
- Writing a "1": electrons are accelerated by a high field until they accumulate on the floating gate, raising V_T
- Writing a "0": electrons driven off floating gate by a reverse gate-source bias through Fowler-Nordheim tunneling, lowering V_T

Next Topics: Low Power Circuits and Wires

- Low power design principles and circuit techniques
 - Voltage scaling, activity factor reduction, clock gating, leakage reduction
- On-chip resistance and capacitance
 - Delay estimation
 - Buffering and repeater insertion