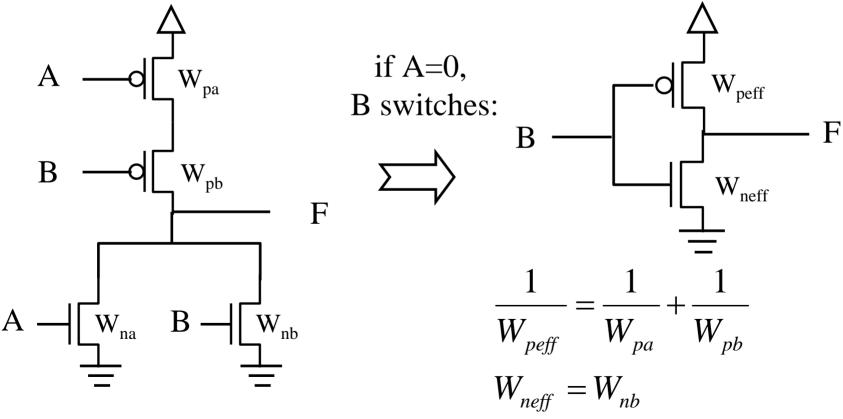
EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

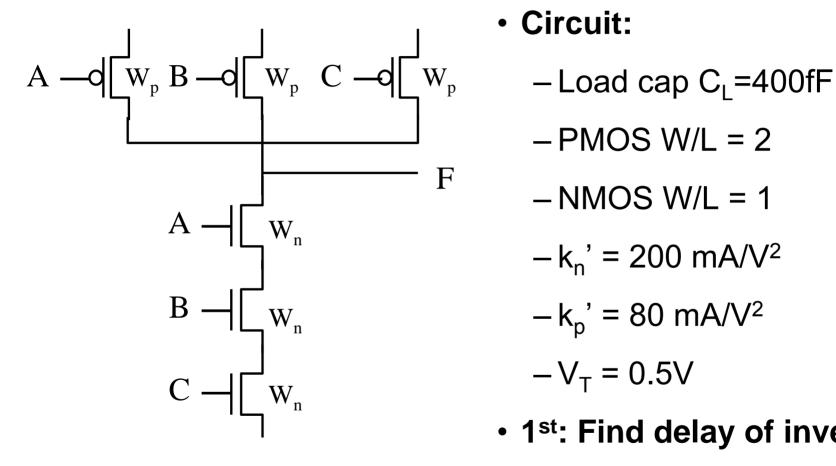
Rajeevan Amirtharajah University of California, Davis


Jeff Parkhurst Intel Corporation

Outline

- Finish Arithmetic Discussion
- Review: Static CMOS Sizing
- Design Guidelines for CMOS
- Pseudo-NMOS Logic: Rabaey 6.2
- Pass Transistor Circuits: Rabaey 6.2 (Kang & Leblebici 9.1-9.2)

Review: CMOS Sizing


- Equivalent inverter approach: replace transistors which are "on" with equivalent transistor
- Use equivalent inverter to find V_M, delays, etc.

Review of Sizing

- Gate delays depend on which inputs switch
 - Normally sized for worst-case delay
 - Best-case (fastest) delay also important due to race conditions in a pipelined datapath
- Switching threshold V_M normally considers all inputs switching
- Delay estimation
 - Combine switching transistors into equivalent inverter

Example: NAND gate

Circuit:

- -PMOSW/L = 2
- -NMOSW/L = 1
- $-k_n' = 200 \text{ mA/V}^2$
- $-k_{\rm p}' = 80 \text{ mA/V}^2$
- $-V_{T} = 0.5V$
- 1st: Find delay of inverter
- 2nd: Find delay of NAND

Equivalent Inverter

- Problems with equivalent inverter method:
 - Need to take into account load capacitance C_L
 - Depends on number of transistors connected to output (junction capacitances)
 - Even transistors which are off (not included in equivalent inverter) contribute to capacitance (i.e. PMOS Drain Capacitance)
 - Need to include capacitance in intermediate stack nodes (NMOS caps). Worst-case: need to charge/discharge all nodes
 - Body effect of stacked transistors

Load Capacitance

- Output capacitance includes junction caps of all transistors on output
- Reducing load capacitance
 - Minimize number of transistors on output node
 - Tapering transistor stacks:
 - Wider transistors closest to power and ground nodes, narrower at output
 - Transistors closest to power nodes carry more current

Intermediate Node Capacitances

Internal capacitances in CMOS gates are charged and discharged

- Depends on input pattern
- Increases delay of gate

Simple analysis

- Combine internal capacitances into output load
- Assumes all capacitances charged and discharged fully

Effect on delay analysis

– Gate delay depends on timing of inputs!

CMOS Design Guidelines I

Transistor sizing

- Size for worst-case delay, threshold, etc
- Tapering: transistors near power supply are larger than transistors near output

Transistor ordering

- Critical signal is defined as the latest-arriving signal to input of gate of interest.
- Put critical signals closest to output
 - Stack nodes are discharged by early signals
 - Reduced body effect on top transistor

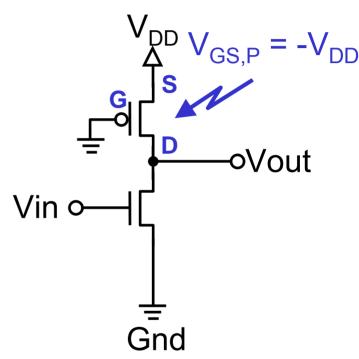
CMOS Design Guidelines II

- Limit fan-in of gate
 - Fan-in: number of gate inputs
 - Affects size of transistor stacks
 - Normally fan-in limit is 3-4
- Convert large multi-input gates into smaller chain of gates
- Limit fanout of gate
 - Fanout: number of gates connected to output
 - Capacitive load: affects gate delay
- NANDs are better than NORs
 - Series NMOS devices less area, capacitance than equivalent series PMOS devices

CMOS Disadvantages

- For N-input CMOS gate, 2N transistors required
 - Each input connects to an NMOS and PMOS transistor
 - Large input capacitance: limits fanout
- Large fan-in gates: always have long transistor stack in PUN or PDN
 - Limits pullup or pulldown delay
 - Requires very large transistors
- Single-stage gates are inverting

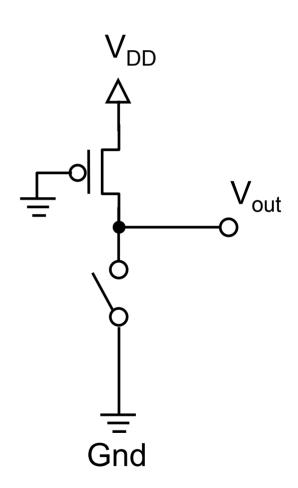
Pseudo-NMOS Logic


- Pseudo-NMOS: replace PMOS PUN with single "always-on" PMOS device (grounded gate)
- Same problems as true NMOS inverter:
 - V_{OL} larger than 0 V
 - Static power dissipation when PDN is on

Advantages

- Replace large PMOS stacks with single device
- Reduces overall gate size, input capacitance
- Especially useful for wide-NOR structures

Pseudo-NMOS Inverter Circuit


- Replace PUN or resistor with "always-on" PMOS transistor
- Easier to implement in standard process than large resistance value
- PMOS load transistor:
 - On when V_{GS} < V_{TP} → V_{GS} = - V_{DD} : transistor always on
 - Linear when $V_{DS} > V_{GS} V_{TP} \rightarrow V_{out} V_{DD} > -V_{DD} V_{TP} \rightarrow V_{out} > -V_{TP}$
 - Saturated when $V_{DS} < V_{GS} V_{T} \rightarrow V_{out} V_{DD} < -V_{DD} V_{TP} \rightarrow V_{out} < -V_{TP}$

Remember: $V_T(PMOS) < 0$

Pseudo-NMOS Inverter: V_{OH}

- V_{OH} for pseudo-NMOS inverter:
 - Vin = 0
 - NMOS in cutoff: no drain current
- Result: V_{OH} is V_{DD} (as in resistive-load inverter or CMOS inverter case)

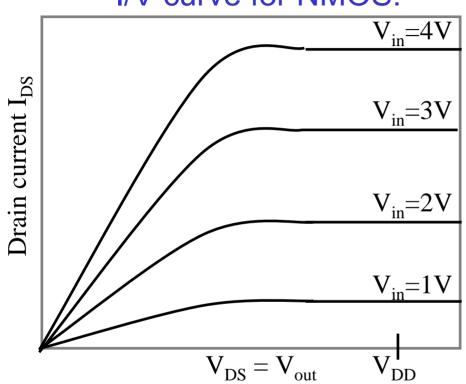
Pseudo-NMOS Inverter: Vol

Find VOL of pseudo-NMOS inverter:

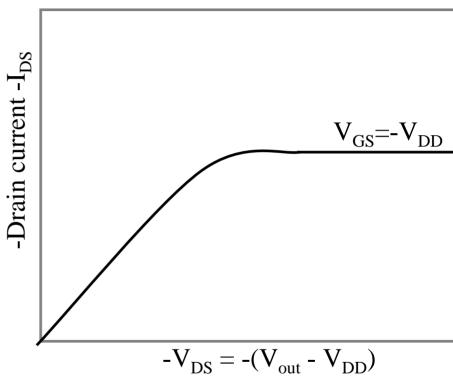
- V_{in} = V_{DD} : NMOS on in linear mode (assume V_{OL} < V_{DD} - $V_{\text{T,n}}$) $I_{Dn} = k_n \left[(V_{DD} - V_{Tn}) V_{OL} - \frac{1}{2} V_{OL}^2 \right]$

- PMOS on in saturation mode (assume)

$$I_{Dp} = \frac{1}{2} k_p \left(-V_{DD} - V_{Tp} \right)^2$$
 (neglecting λ)

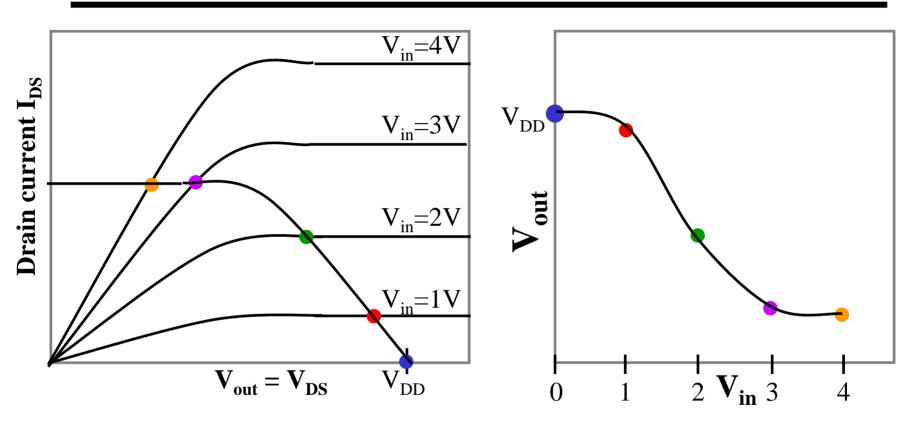

- Setting $I_{dn} = I_{dp}$:

$$\frac{1}{2}k_nV_{OL}^2 - k_n(V_{DD} - V_{Tn})V_{OL} + \frac{1}{2}k_p(-V_{DD} - V_{Tp})^2 = 0$$

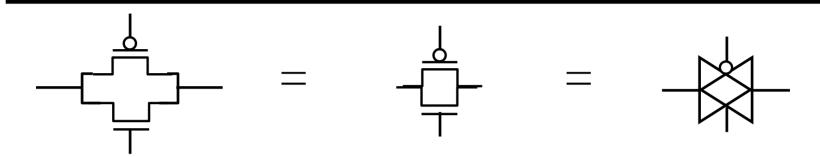

- Key point: V_{OL} is not zero
 - Depends on thresholds, sizes of N and P transistors

Pseudo NMOS Inverter: I/V Curves

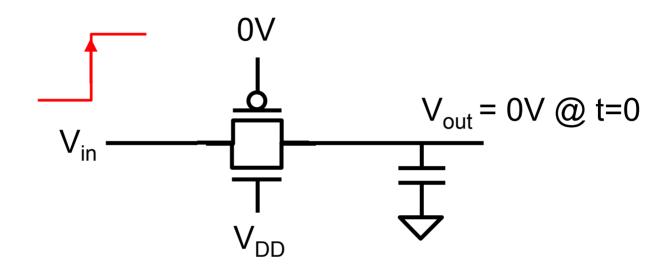
I/V curve for NMOS:



I/V curve for PMOS:


- Plot of -I_{DS} vs -V_{DS} since current is from source to drain
- Only one curve since V_{GS}
 fixed

Pseudo NMOS Inverter: VTC


- Similar VTC to resistive-load inverter
 - Sharper transition region, smaller area
- VOL worse than CMOS inverter

Transmission Gate Logic

- NMOS and PMOS connected in parallel
- Allows full rail transition ratioless logic
- Equivalent resistance relatively constant during transition
- Complementary signals required for gates
- Some gates can be efficiently implemented using transmission gate logic (XOR in particular)

Equivalent Transmission Gate Resistance



For a rising transition at the output (step input)

- NMOS sat, PMOS sat until output reaches |V_{TP}|
- NMOS sat, PMOS lin until output reaches V_{DD}-V_{TN}
- NMOS off, PMOS lin for the final V_{DD} V_{TN} to V_{DD} voltage swing

Equivalent Resistance

- Equivalent resistance R_{eq} is parallel combinaton of R_{eq,n} and R_{eq,p}
- R_{eq} is relatively constant

Resistance Approximations

To estimate equivalent resistance:

- Assume both transistors in linear region
- Ignore body effect
- Assume voltage difference (V_{DS}) is small

$$R_{eq,n} \approx \frac{1}{k_n (V_{DD} - V_{tn})} \qquad R_{eq,p} \approx \frac{1}{k_p (V_{DD} - |V_{tp}|)}$$

$$R_{eq} \approx \frac{1}{k_n (V_{DD} - V_{tn}) + k_p (V_{DD} - |V_{tp}|)}$$

Equivalent Resistance – Region 1

NMOS saturation:

$$R_{eq,n} = \frac{(V_{DD} - V_{out})}{\frac{1}{2} k_n (V_{DD} - V_{out} - V_{tn})^2}$$

PMOS saturation:

$$R_{eq,p} = \frac{(V_{DD} - V_{out})}{\frac{1}{2} k_p (-V_{DD} - V_{tp})^2}$$

Equivalent Resistance – Region 2

NMOS saturation:

$$R_{eq,n} = \frac{(V_{DD} - V_{out})}{\frac{1}{2} k_n (V_{DD} - V_{out} - V_{tn})^2}$$

PMOS linear:

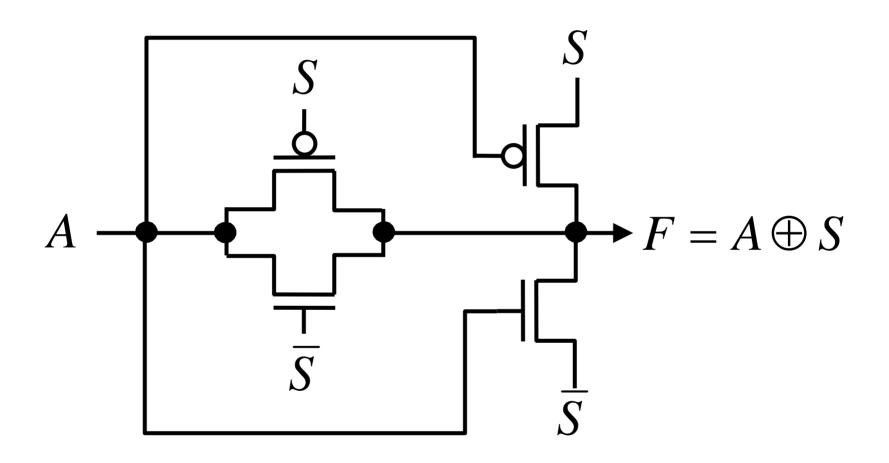
$$R_{eq,p} = \frac{2(V_{DD} - V_{out})}{k_p (2(V_{DD} - |V_{TP}|)(V_{DD} - V_{out}) - (V_{DD} - V_{out})^2)}$$

$$= \frac{2}{k_p [2(V_{DD} - |V_{TP}|) - (V_{DD} - V_{out})]}$$

Equivalent Resistance – Region 3

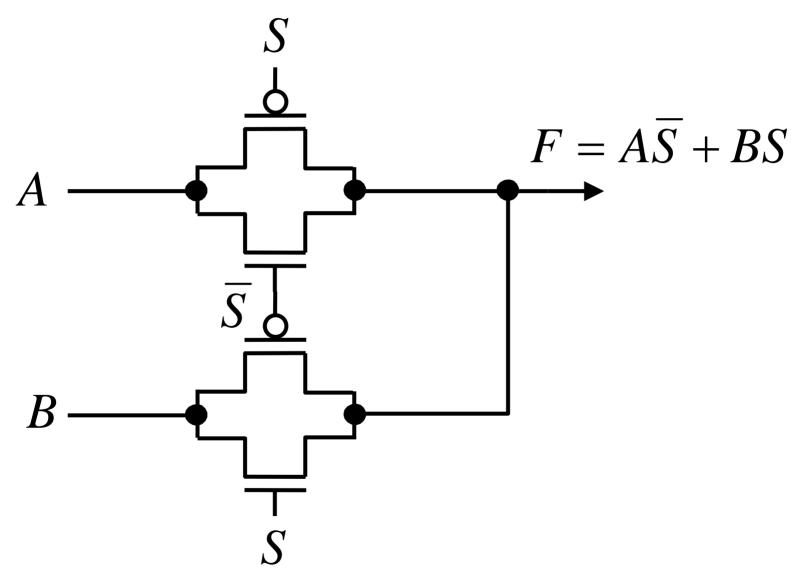
NMOS cut off:

$$R_{eq,n} = \infty$$

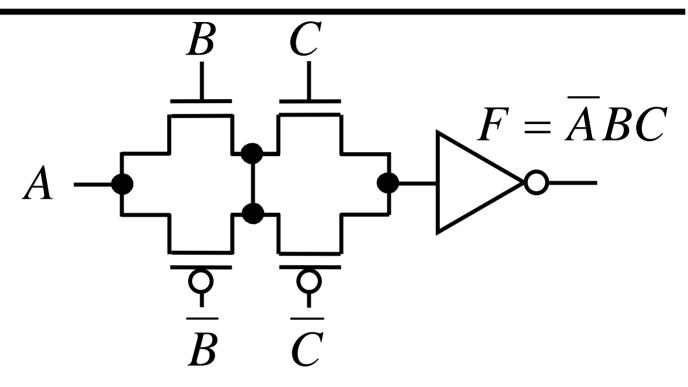

PMOS linear:

$$R_{eq,p} = \frac{2}{k_p \left[2(V_{DD} - |V_{TP}|) - (V_{DD} - V_{out}) \right]}$$

Transmission Gate Logic


- Useful for multiplexers (select between multiple inputs) and XORs
- Transmission gate implements logic function F = A if S
 - If S is 0, output is floating, which should be avoided
 - Always make sure one path is conducting from input to output
- Only two transmission gates needed to implement AS + AS
 - Transmission Gate 1: A if S
 - Transmission Gate 2: A if S

Transmission Gate XOR



• If S = 0, F = A and when S = 1, F = A

Transmission Gate Multiplexer

Full Transmission Gate Logic

- PMOS devices in parallel with NMOS transistors pass full V_{DD} (only one logic path shown above)
- Requires more devices, but each can be sized smaller than static CMOS
- Output inverter reduces impact of fanout

Next Topic: Dynamic Circuits

- Extend dynamic sequential circuit idea to logic circuits
 - Improved speed
 - Reduced area
 - Challenging to design: timing and noise issues, charge sharing, leakage
 - Preferred design style for high performance circuits