Arithmetic Building Blocks

Chapter 11 Rabaey

Announcements

- Today: wrap up sequential circuits, start discussing arithmetic circuits

A Generic Digital Processor

Building Blocks for Digital Architectures

Datapath (Arithmetic Unit)

- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)
Memory
- RAM, ROM, Buffers, Shift registers

Control

- Finite state machine (PLA, random logic.)
- Counters

Interconnect

- Switches
- Arbiters
- Bus

Bit-Sliced Design

Tile identical processing elements

Full Adder

\boldsymbol{A}	B	C_{i}	\boldsymbol{S}	$C_{\boldsymbol{o}}$	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

The Binary Adder

$$
\begin{aligned}
& \mathbf{S}=\mathbf{A} \oplus \mathbf{B} \oplus \mathrm{C}_{\mathbf{i}} \\
& =A \bar{B} \bar{C}_{i}+\bar{A} B \bar{C}_{i}+\bar{A} \bar{B} C_{i}+A B C_{j} \\
& C_{0}=A B+B C_{i}+A C_{i}
\end{aligned}
$$

The Ripple-Carry Adder

Worst case delay linear with the number of bits

$$
\begin{gathered}
\mathrm{t}_{\mathrm{d}}=\mathrm{O}(\mathrm{~N}) \\
\mathbf{t}_{\text {adder }} \approx(\mathbf{N}-\mathbf{1}) \mathbf{t}_{\text {carry }}+\mathbf{t}_{\text {sum }}
\end{gathered}
$$

Goal: Make the fastest possible carry path circuit

Complimentary Static CMOS Full Adder

28 Transistors

A Closer Look

- Drawbacks
» Tall PMOS Stack \longrightarrow
- Slows down circuit
» C_{0} load is 2 diffusion and 6 gate capacitances
» Ci goes through the extra output inverter to Co
- Could optimize with next stage
» Sum generation has extra inverter on output

28 Transistors

- Not the critical path
- Positive
» Ci closest to output node

Inversion Property

$$
\begin{aligned}
& \bar{S}\left(A, B, C_{i}\right)=S\left(\bar{A}, \bar{B}, \overline{C_{i}}\right) \\
& \bar{C}_{o}\left(A, B, C_{i}\right) \\
&=C_{o}\left(\bar{A}, \bar{B}, \overline{C_{i}}\right)
\end{aligned}
$$

Minimize Critical Path by Reducing Inverting Stages

Exploit Inversion Property

Note: need 2 different types of cells

Applying Inversion Property

Express Sum and Carry as Function of P, G, D

Define 3 new variable which ONLY depend on A, B
Generate $(G)=A B \quad C_{0}=1$ if $G=1$
Propagate $(P)=A \oplus B \quad C_{0}=C_{i}$ if $\mathbf{P}=1$
Delete $=\bar{A} \bar{B} \quad \mathrm{C}_{0}=0$ if $\mathrm{D}=1$

$$
\begin{aligned}
C_{o}(G, P) & =G+P C_{i} \\
S(G, P) & =P \oplus C_{i}
\end{aligned}
$$

A	B	$C_{\boldsymbol{i}}$	\boldsymbol{S}	$C_{\boldsymbol{o}}$	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

Can also derive expressions for S and C_{o} based on D and P

A Better Structure: the Mirror Adder

24 transistors

The Mirror Adder I

-The NMOS and PMOS chains are completely symmetrical. This guarantees identical rising and falling transitions if the NMOS and PMOS devices are properly sized. A maximum of two series transistors can be observed in the carry-generation circuitry.
-When laying out the cell, the most critical issue is the minimization of the capacitance at node C_{0}. The reduction of the diffusion capacitances is particularly important.
-The capacitance at node C_{o} is composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell.

The Mirror Adder II

-The transistors connected to C_{i} are placed closest to the output.

- Fastest for late arriving inputs, \boldsymbol{C}_{i} tends to arrive late
-Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size.

Adder Architectures

-In addition to optimizing each full adder cell and exploiting inversion property, we can also reorganize the add computation to speed things up
-Basic idea is to overlap propagating the carry with computing the Propagate and Generate functions
-Discuss three basic architectures

- Carry-Bypass
- Carry-Select
- Carry-Lookahead

Carry-Bypass Adder

Idea: If (P0 and P1 and P2 and P3 = 1) then $\mathrm{C}_{03}=\mathrm{C}_{0}$, else "kill" or "generate".

Carry-Bypass Adder (cont.)

Bit 0-3
Bit 4-7
Bit 8-11
Bit 12-15

Note that this is done at the expense of a MUX in the carry delay path !!

Carry Ripple vs. Carry Bypass

Essentially greater than 4 bits is needed to overcome the overhead of the MUX

Carry-Select Adder

Carry Select Adder: Critical Path

$\begin{array}{llll}\text { Bit 0-3 } & \text { Bit 4-7 } & \text { Bit 8-11 } & \text { Bit 12-15 }\end{array}$

Linear Carry Select

Carry-Select Adder Observations

- The inputs to the final multiplexer are steady long before the Mux select (Ci) arrives
» Path is the same as is the number of bits
- Would be helpful to try and even out the delays so that the critical path is balanced between inputs and Mux select.
» Make logic simpler with the least significant bits by reducing the number of bits handled in the FA or half adder (HA). HA is FA without Ci ($2 \mathrm{ins}, 2$ outs)
» Add bits progressively as you move to the MSB

Square Root Carry Select

Adder Delays: Comparison

Arithmetic
© Prentice Hall 1995

Carry Look Ahead: Basic Idea

Look-Ahead: Topology

- No more than $\mathrm{N}=4$ bits
- Delay still increases linearly with number of bits
- Capacitance, resistance too high for $\mathrm{N} \boldsymbol{>} 4$

Binary Multiplication

$$
\begin{aligned}
& \mathbf{Z}=\ddot{\mathbf{X}} \times \mathbf{Y}=\sum_{\mathbf{k}=\mathbf{0}}^{\sum_{\mathbf{M}}+\mathbf{N}-\mathbf{1}} \mathbf{Z}_{\mathbf{k}} \mathbf{2}^{\mathbf{k}} \\
&=\left(\sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{M - 1}} \mathbf{X}_{\mathbf{i}} \mathbf{2}^{\mathbf{i}}\right)_{\mathbf{N}-\mathbf{1}}^{\left.\sum_{\mathbf{j}=\mathbf{0}} \mathbf{Y}_{\mathbf{j}} \mathbf{2}^{\mathbf{j}}\right)} \\
&=\sum_{\mathbf{i}=\mathbf{0}}^{M-\mathbf{1}}\left(\sum_{\mathbf{j}=\mathbf{0}} \mathbf{X}_{\mathbf{i}} \mathbf{Y}_{\mathbf{j}} \mathbf{2}^{\mathbf{i}+\mathbf{j}}\right) \\
& \text { with }
\end{aligned}
$$

$$
\begin{aligned}
& X=\sum_{i=0}^{M-1} X_{i} \mathbf{2}^{i} \\
& \mathbf{Y}=\sum_{j=0}^{N-1} \mathbf{Y}_{j} \mathbf{2}^{\mathbf{j}}
\end{aligned}
$$

Binary Multiplication

The Array Multiplier

Digital Integrated Circuits
Arithmetic
© Prentice Hall 1995

The MxN Array Multiplier: Critical Path

$$
\left.t_{\boldsymbol{m u l t}^{*}[(M-1)+\langle N-2)]} t_{\text {carry }}{ }^{+\langle N-1}\right\rangle t_{\text {sum }^{+}} \quad t_{\text {and }}
$$

Adder Cells in Array Multiplier

Identical Delays for Carry and Sum

Multiplier Floorplan

Array Multiplier Reflections

- Many equal critical paths
» Very hard to optimize by transistor sizing
- We could pass the carry bits diagonally down instead of across
» Output does not change
» Need to add an extra stage to accommodate this

Carry Save Multiplier

Vector Merging Adder

$$
\left.\boldsymbol{t}_{\boldsymbol{m u l t}^{\prime}}=\langle\boldsymbol{N - 1}\rangle \boldsymbol{t}_{\boldsymbol{c a r r r}^{+}} \quad \boldsymbol{t}_{\text {and }} \boldsymbol{t}_{\text {merge }}\right]
$$

The Tree Multiplier

- Note that the partial products layout looks as follows:

- Note that we can rearrange and add the partial products differently
- Reduce number of adder circuits and logic depth
- FA compresses 3 b to 2 b , HA has 2 b in and 2 b out

Tree Multiplier

- Re arranging
$1^{\text {st }}$ Stage Half Adders

Tree Multiplier

- Re arranging

6	5	4	3	2	1	0
	-	0		0	0	0

Tree Multiplier

- Re arranging

6	5	4	3	2	1	0
	-	0		0		0

Tree Multiplier

- Re arranging

6	5	4	3	2	1	0
	0	0	0		0	0

$3^{\text {rd }}$ Stage
$\begin{array}{lllll}4 & 3 & 2 & 1 & 0\end{array}$

Tree Multiplier

- Re arranging

6	5	4	3	2	1	0
	0	0	0		0	0

-

$3^{\text {rd }}$ Stage Half Adders

Wallace-Tree Multiplier

Multipliers: Summary

- Optimization goals different than Adder
» Identify critical path
» More system level optimization then individual cell optimization

Tree Multiplier

- Re arranging $\quad \begin{array}{lllllllll}6 & 5 & 4 & 3 & 2 & \mathbf{1} & 0 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet\end{array}$

