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Announcements
Today: wrap up sequential circuits, start 
discussing arithmetic circuits
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A Generic Digital Processor
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Building Blocks for Digital Architectures

Datapath (Arithmetic Unit)
- Bit-sliced datapath (adder , multiplier, 

shifter, comparator, etc.)

Memory
- RAM, ROM, Buffers, Shift registers

Control
- Finite state machine (PLA, random logic.)
- Counters

Interconnect
- Switches
- Arbiters
- Bus 
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Bit-Sliced Design
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Full Adder

A B
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The Binary Adder

S A B Ci⊕ ⊕=

A= BCi ABCi ABCi ABCi+ + +

Co AB BCi ACi+ +=

A B

Cout

Sum

Cin Full
adder
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The Ripple-Carry Adder

A0 B0

S0

Co,0Ci,0

A1 B1

S1

Co,1

A2 B2

S2

Co,2

A3 B3

S3

Co,3

(= Ci,1)
FA FA FA FA

Worst case delay linear with the number of bits

tadder N 1–( )tcarry tsum+≈

td = O(N)

Goal: Make the fastest possible carry path circuit
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Complimentary Static CMOS Full Adder
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A Closer Look

Drawbacks
» Tall PMOS Stack

– Slows down circuit
» Co load is 2 diffusion and 6 

gate capacitances
» Ci goes through the extra 

output inverter to Co
– Could optimize with next 

stage
» Sum generation has extra 

inverter on output
– Not the critical path

Positive
» Ci closest to output node
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Inversion Property
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Minimize Critical Path by Reducing Inverting Stages

A0 B0

S0

Co,0Ci,0

A1 B1

S1

Co,1

A2 B2

S2

Co,2 Co,3
FA’ FA’ FA’ FA’

A3 B3

S3

Odd CellEven Cell

Exploit Inversion Property

Note: need 2 different types of cells
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Applying Inversion Property
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With the next stage, invert A and B. You will get as outputs 
S and C…so take away inverters on these outputs.

Invert A and B inputs
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Express Sum and Carry as Function of P, G, D

Define 3 new variable which ONLY depend on A, B
Generate (G) = AB
Propagate (P) = A ⊕ B
Delete = A B

Can also derive expressions for S and Co based on D 
and P

C0 = 0 if D = 1

C0 = 1 if G = 1
C0 = Ci if P = 1
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A Better Structure: the Mirror Adder
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The Mirror Adder I
•The NMOS and PMOS chains are completely 
symmetrical. This guarantees identical rising and 
falling transitions if the NMOS and PMOS devices are 
properly sized. A maximum of two series transistors 
can be observed in the carry-generation circuitry.

•When laying out the cell, the most critical issue is the 
minimization of the capacitance at node Co. The 
reduction of the diffusion capacitances is particularly 
important. 

•The capacitance at node Co is composed of four 
diffusion capacitances, two internal gate capacitances, 
and six gate capacitances in the connecting adder cell .
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The Mirror Adder II
•The transistors connected to Ci are placed closest to 
the output.

• Fastest for late arriving inputs, Ci tends to arrive late
•Only the transistors in the carry stage have to be 
optimized for optimal speed. All transistors in the sum 
stage can be minimal size. 
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Adder Architectures
•In addition to optimizing each full adder cell and 
exploiting inversion property, we can also reorganize 
the add computation to speed things up 

•Basic idea is to overlap propagating the carry with 
computing the Propagate and Generate functions

•Discuss three basic architectures
• Carry-Bypass
• Carry-Select
• Carry-Lookahead
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Carry-Bypass Adder

FA FA FA FA

P0 G1 P0 G1 P2 G2 P3 G3

Co,3Co,2Co,1Co,0Ci,0

FA FA FA FA

P0 G1 P0 G1 P2 G2 P3 G3

Co,2Co,1Co,0Ci,0

Co,3
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ul
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BP=PoP1P2P3

Idea: If (P0 and P1 and P2 and P3 = 1)
then Co3 = C0, else “kill” or “generate”.
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Carry-Bypass Adder (cont.)

Setup

Carry
Propagation

Sum

Setup

Carry
Propagation

Sum

Setup

Carry
Propagation

Sum

Setup

Carry
Propagation

Sum

Bit 0-3 Bit 4-7 Bit 8-11 Bit 12-15

Ci,0

Note that this is done at the expense of a MUX in the 
carry delay path !!
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Carry Ripple vs. Carry Bypass

N

tp

ripple adder

bypass adder

4..8

Essentially greater than 4 bits is needed to overcome the 
overhead of the MUX
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Carry-Select Adder

Setup

"0" Carry Propagation

"1" Carry Propagation

Multiplexer

Sum Generation

Co,k-1 Co,k+3

"0"

"1"

P,G

Carry Vector

Evaluate possibilities 
for both Ci = 1 and Ci = 
0 and then select when 

Ci comes in.

Results in about 30%
extra transistors
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Carry Select Adder: Critical Path 

Setup

"0" Carry 

"1" Carry 

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry 

"1" Carry 

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry 

"1" Carry 

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry 

"1" Carry 

Multiplexer

Sum Generation

"0"

"1"

Bit 0-3 Bit 4-7 Bit 8-11 Bit 12-15

S0-3 S4-7 S8-11 S12-15

Co,15Co,11Co,7Co,3Ci,0



Digital Integrated Circuits © Prentice Hall 1995Arithmetic

Linear Carry Select 
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Carry-Select Adder Observations

The inputs to the final multiplexer are steady long 
before the Mux select (Ci) arrives
» Path is the same as is the number of bits

Would be helpful to try and even out the delays so that 
the critical path is balanced between inputs and Mux
select.
» Make logic simpler with the least significant bits by 

reducing the number of bits handled in the FA or half 
adder (HA).  HA is FA without Ci (2 ins, 2 outs) 

» Add bits progressively as you move to the MSB
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Square Root Carry Select 
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Adder Delays: Comparison 

0.0 20.0 40.0 60.0
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Carry Look Ahead: Basic Idea

A0,B0 A1,B1 AN-1,BN-1...

Ci,0 P0 Ci,1 P1
Ci,N-1 PN-1

...
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Look-Ahead: Topology
VDD

P3

P2

P1

P0

G3

G2

G1

G0

Ci,0

Co,3

• No more than N = 4 bits
• Delay still increases 
linearly with number of 
bits

• Capacitance, resistance 
too high for N > 4
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Binary Multiplication
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Binary Multiplication

1  0  1  1

1  0  1  0  1  0

0  0  0  0  0  0

1  0  1  0  1  0

1  0  1  0  1  0

1  0  1  0  1  0

×

1  1  1  0  0  1  1  1  0

+

Partial Products

AND operation
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The Array Multiplier

HA FA FA HA

FA FA FA HA

FA FA FA HA

X0X1X2X3 Y1

X0X1X2X3 Y2

X0X1X2X3 Y3

Z1

Z2

Z3Z4Z5Z6

Z0

Z7

X0X1X2X3
Y0
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HA FA FA HA

HAFAFAFA

FAFA FA HA

Critical Path 1

Critical Path 2

The MxN Array Multiplier: Critical Path

Critical Path 1 & 2
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Adder Cells in Array Multiplier
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Identical Delays for Carry and Sum



Digital Integrated Circuits © Prentice Hall 1995Arithmetic

Multiplier Floorplan

SCSCSCSC

SCSCSCSC
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Z3Z4Z5Z6Z7

X0X1X2X3
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Y2
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Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted
through the complete array.
(          )



Digital Integrated Circuits © Prentice Hall 1995Arithmetic

Array Multiplier Reflections

Many equal critical paths
» Very hard to optimize by transistor sizing

We could pass the carry bits diagonally down instead 
of across
» Output does not change
» Need to add an extra stage to accommodate this
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Carry Save Multiplier

HA HA HA HA

FAFAFAHA

FAHA FA FA

FAHA FA HA

Vector Merging Adder

Could use carry look 
ahead structure
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The Tree Multiplier
Note that the partial products layout looks as follows:

Note that we can rearrange and add the partial 
products differently
Reduce number of adder circuits and logic depth
FA compresses 3b to 2b, HA has 2b in and 2b out
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Tree Multiplier

Re arranging

1st Stage
Half Adders

6      5      4     3     2      1     0
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Tree Multiplier

Re arranging

1st Stage

2nd Stage

6      5      4     3     2      1     0

6      5      4     3     2      1     0
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Tree Multiplier

Re arranging

1st Stage

2nd Stage Full Adders

6      5      4     3     2      1     0

6      5      4     3     2      1     0
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Tree Multiplier

Re arranging

1st Stage

2nd Stage Full Adders 3rd Stage

6      5      4     3     2      1     0

6      5      4     3     2      1     0 6        5      4       3      2      1     0
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Tree Multiplier

Re arranging

1st Stage

2nd Stage Full Adders 3rd Stage Half Adders

6      5      4     3     2      1     0

6      5      4     3     2      1     0 6        5      4       3      2      1     0
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Wallace-Tree Multiplier
Partial X3Y2  X2Y2 X3Y1 X1Y2 X3Y0 X1Y1 X2Y0 X0Y1
Products X3Y3  X2Y3 X1Y3 X0Y3 X2Y1 X0Y2 X1Y0 X0Y0

HA HAFirst Stage

2nd Stage

Final Adder

FA FA FA HA

Z7 Z6                    Z5                                Z4                             Z3                       Z2                      Z1                         Z0
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Multipliers: Summary

Optimization goals different than Adder
» Identify critical path
» More system level optimization then 

individual cell optimization
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Tree Multiplier

Re arranging

1st Stage

2nd Stage 3rd Stage

6      5      4     3     2      1     0

6      5      4     3     2      1     0 6        5      4       3      2      1     0
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