# TEXAS INSTRUMENTS

Data sheet acquired from Harris Semiconductor SCHS018C – Revised September 2003

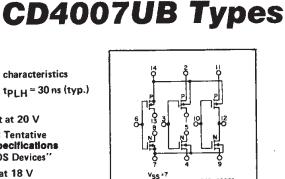
# CMOS Dual Complementary Pair Plus Inverter

High-Voltage Types (20-Volt Rating)

■ CD4007UB types are comprised of three n-channel and three p-channel enhancement-type MOS transistors. The transistor elements are accessible through the package terminals to provide a convenient means for constructing the various typical circuits as shown in Fig. 2.

More complex functions are possible using multiple packages. Numbers shown in parentheses indicate terminals that are connected together to form the various configurations listed.

The CD4007UB types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).


#### Medium Speed Operation — tpHL, tpLH = 30 ns (typ.)

Features:

- at 10 V = 100% tested for quiescent current at 20 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Standardized symmetrical output characteristics

Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C



vss 92cs- 25035 VDD×14 Terminal No.14 -- VDD

Terminal No. 7 – V<sub>SS</sub>

FUNCTIONAL DIAGRAM

#### RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

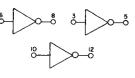
| CHARACTERISTIC                                             | LI   | UNITS |   |
|------------------------------------------------------------|------|-------|---|
|                                                            | MIN. | MAX.  |   |
| Supply-Voltage Range<br>(For T <sub>A</sub> = Full Package |      |       |   |
| Temperature Range)                                         | 3    | 18    | V |

#### STATIC ELECTRICAL CHARACTERISTICS

| CHARACTER                 | CONDITIONS |            |    | LIMITS AT INDICATED TEMPERATURES (°C) |       |       |       |       |                   | UNITS |     |
|---------------------------|------------|------------|----|---------------------------------------|-------|-------|-------|-------|-------------------|-------|-----|
| ISTIC                     | Vo<br>(V)  | VIN<br>(V) |    |                                       |       |       |       |       | Max.              |       |     |
| Quiescent Dévice          |            | 0,5        | 5  | 0.25                                  | 0.25  | 7.5   | 7.5   | _     | 0.01              | 0.25  |     |
| Current,                  |            | 0,10       | 10 | 0.5                                   | 0.5   | 15    | 15    | _     | 0.01              | 0.5   |     |
| IDD Max.                  |            | 0,15       | 15 | 1                                     | 1     | 30    | 30    | -     | 0.01              | 1     | μΑ  |
|                           |            | 0,20       | 20 | 5                                     | 5     | 150   | 150   |       | 0.02              | 5     |     |
| Output Low                | 0.4        | 0.5        | 5  | 0.64                                  | 0.61  | 0.42  | 0.36  | 0.51  | 1                 |       |     |
| (Sink) Current            | 0.5        | 0,10       | 10 | 1.6                                   | 1.5   | 1.1   | 0.9   | 1.3   | 2.6               | _     |     |
| IOL Min.                  | 1.5        | 0,15       | 15 | 4.2                                   | 4     | 2.8   | 2.4   | 34    | 6.8               |       |     |
| Output High               | 4.6        | 0,5        | 5  | -0.64                                 | -0.61 | -0.42 | -0.36 | -0.51 | -1                |       | mA  |
| (Source)                  | 2.5        | 0,5        | 5  | -2                                    | 1.8   | -1.3  | -1.15 | -1.6  | -3.2              | -     |     |
| Current,<br>IOH Min.      | 9,5        | 0,10       | 10 | -1.6                                  | -1.5  | -1.1  | -0.9  | -1.3  | -2.6              | -     |     |
|                           | 13.5       | 0,15       | 15 | -4.2                                  | -4    | -2.8  | -2.4  | -3.4  | -6.8              | -     |     |
| Output Voltage:           | _          | 0,5        | -5 | 0.05                                  |       |       |       | -     | 0                 | 0.05  |     |
| Low-Level,                | _          | .0;10      | 10 | 0.05                                  |       |       |       | -     | 0                 | 0.05  |     |
| VOL Max.                  | _          | 0,15       | 15 | 0.05                                  |       |       |       | -     | 0                 | 0.05  |     |
| Output Voltage:           | _          | 0,5        | 5  | 4.95                                  |       |       | 4.95  | 5     |                   |       |     |
| High-Level,               | -          | 0,10       | 10 | 9.95                                  |       |       |       | 9.95  | 10                | -     | ] [ |
| VOH Min.                  | -          | 0,15       | 15 |                                       | 14    | 1.95  |       | 14.95 | 15                | -     |     |
| Input Low                 | 4.5        | -          | 5  |                                       |       | 1     |       | -     | -                 | 1     |     |
| Voltage,<br>VIL Max.      | 9          | -          | 10 |                                       |       | 2     |       | -     | —                 | 2     |     |
|                           | 13.5       | -          | 15 |                                       |       | 2.5   |       | -     | _                 | 2.5   | v   |
| Inpút High<br>Voltage,    | 0.5        | -          | 5  | 4                                     |       |       |       | 4     |                   |       | ľ   |
|                           | 1          | -          | 10 | 8                                     |       |       |       | 8     |                   |       | 4   |
| VIH Min.                  | 1.5        | -          | 15 | 12.5                                  |       |       |       | 12.5  | -                 | -     | I   |
| Input Current<br>IIN Max. |            | 0,18       | 18 | ±0.1                                  | ±0.1  | ±1    | ±1    | _     | ±10 <sup>-5</sup> | ±0.1  | μA  |

#### Applications:

- Extremely high-input impedance amplifiers
- Shapers
- Inverters
- Threshold detector
- Linear amplifiers
- Crystal oscillators


# TERMINAL DIAGRAM Top View 02 (P) DRAM 10 Vbb, 016 02 8 03 (P) 02 (P) SURCE 2 13 SUBSTRATES, 01 (P)DRAM 02 (P) SURCE 2 13 01 (P) SURCE 02 (M) SOURCE 4 11 03 (P) DRAM 02 (M) DRAM 5 10 03 (P) DRAM 02 (M) DRAM 5 10 03 (P) DRAM 03 (M) DRAM 5 10 03 (M) DRAM 03 (M) DRAM 5 10 03 (M) DRAM 04 (M ZES 9 95 (M) SOURCE 9 05 (M) SOURCE 7 9 (D) (M) DRAM

9203-24449

## CD4007UB Types

| MAXIMUM RATINGS, Absolute-Maximum Values:                                                                              |
|------------------------------------------------------------------------------------------------------------------------|
| DC SUPPLY-VOLTAGE RANGE, (VDD)                                                                                         |
| Voltages referenced to V <sub>SS</sub> Terminal)                                                                       |
| INPUT VOLTAGE RANGE, ALL INPUTS                                                                                        |
| DC INPUT CURRENT, ANY ONE INPUT                                                                                        |
| POWER DISSIPATION PER PACKAGE (PD):                                                                                    |
| For T <sub>A</sub> = -55°C to +100°C                                                                                   |
| For T <sub>A</sub> = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW<br>DEVICE DISSIPATION PER OUTPUT TRANSISTOR |
| FOR T <sub>A</sub> = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)                                                |
| OPERATING-TEMPERATURE RANGE (TA)                                                                                       |
| STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C                                                                         |
| LEAD TEMPERATURE (DURING SOLDERING):                                                                                   |
| At distance 1/16 $\pm$ 1/32 inch (1.59 $\pm$ 0.79mm) from case for 10s max                                             |

a) Triple Inverters



9205-15350

(14,2,11); (8,13); (1,5); (7,4,9)

b) 3 -Input NOR Gate

(13,2); (1,11);

9205-15349

-012

(12,5,8); (7,4,9)

### DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}$ C; Input $t_r$ , $t_f = 20 \text{ ns}$ , $C_L$ = 50 pF, $R_L$ = 200 K $\Omega$

|                     | COND        | ITIONS                   | LIN  | 1    |       |    |
|---------------------|-------------|--------------------------|------|------|-------|----|
| CHARACTER           |             | V <sub>DD</sub><br>Volts | Тур. | Max. | UNITS |    |
| Propagation Delay T |             | 5                        | 55   | 110  |       |    |
|                     | TPHL.       |                          | 10   | 30   | 60    | ns |
|                     | <b>IPLH</b> |                          | 15   | 25   | 50    | 1  |
| Transition Time     | tTHL,       | 1                        | 5    | 100  | 200   |    |
|                     |             |                          | 10   | 50   | 100   | ns |
|                     | τιμ         |                          | 15   | 40   | 80    | 1  |
| Input Capacitance   | CIN         | Any Input                |      | 10   | 15    | pF |

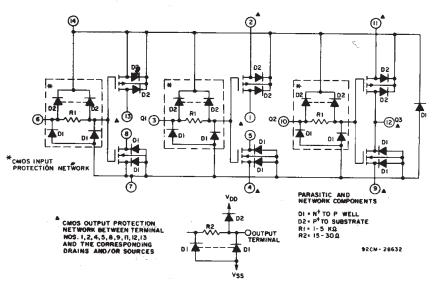
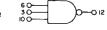




Fig. 1 - Detailed schematic diagram of CD4007UB showing input, output, and parasitic diodes.

c) 3-Input NAND Gate



(1,12,13); (2,14,11); (4,8); (5,9)

#### d) Tree (Relay) Logic

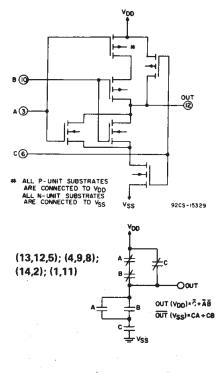
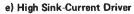
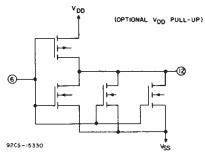
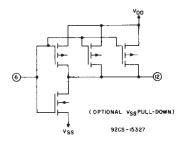



Fig. 2 - Sample CMOS logic circuit arrangements using type CD4007UB.

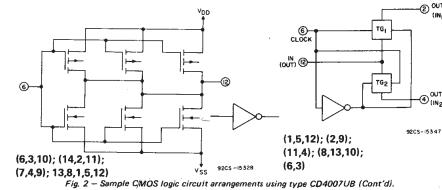

3


(6,3,10); (8.5, 12);

(11,14); 7,4,9)


(6,3,10); (13,1,12);

(14,2,11); (7,9)






f) High Source-Current Driver



g) High Sink - and Source-Current Driver







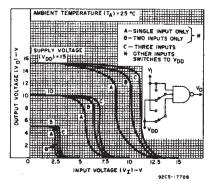
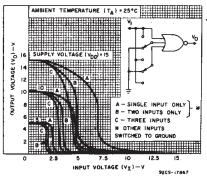
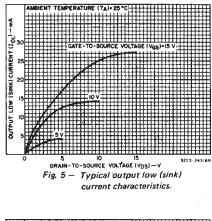
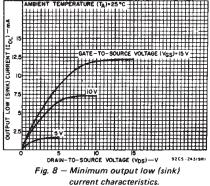
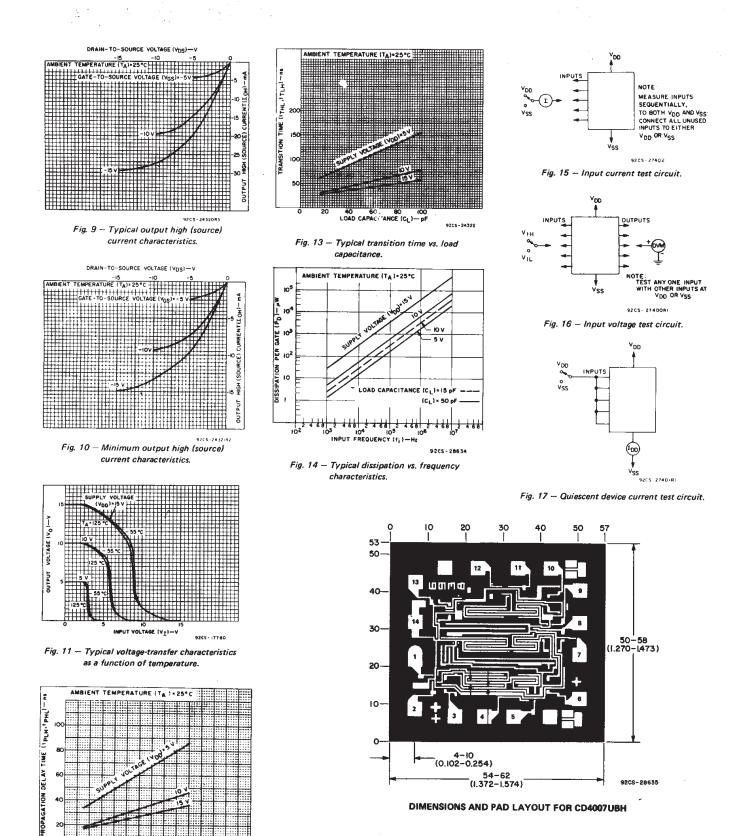






Fig. 3 - Typical voltage-transfer characteristics for NAND gate.




Typical voltage-transfer characteristics Fig. 4 for NOR gate.





h) Dual Bi-Directional Transmission Gating

-© <sup>OUT</sup>! (IN<sub>I</sub>)



3

COMMERCIAL CMOS HIGH VOLTAGE ICs

92CS-28635

DIMENSIONS AND PAD LAYOUT FOR CD4007UBH

3-17

LOAD CAPACITANCE (CL) - pF 92CS-24434RI

Fig. 12 - Typical propagation delay time vs. load capacitance.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mile  $(10^{-3} \text{ inch})$ .

## **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup>  | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------|
| CD4007UBE        | ACTIVE                | PDIP            | Ν                  | 14   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type           |
| CD4007UBF        | ACTIVE                | CDIP            | J                  | 14   | 1              | TBD                        | Call TI          | N / A for Pkg Type           |
| CD4007UBF3A      | ACTIVE                | CDIP            | J                  | 14   | 1              | TBD                        | Call TI          | N / A for Pkg Type           |
| CD4007UBF3A116   | OBSOLETE              | CDIP            | J                  | 14   |                | TBD                        | Call TI          | Call TI                      |
| CD4007UBM        | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBM96      | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBM96E4    | ACTIVE                | SOIC            | D                  | 14   | 2500           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBME4      | ACTIVE                | SOIC            | D                  | 14   | 50             | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBMT       | ACTIVE                | SOIC            | D                  | 14   | 250            | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBMTE4     | ACTIVE                | SOIC            | D                  | 14   | 250            | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBNSR      | ACTIVE                | SO              | NS                 | 14   | 2000           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBNSRE4    | ACTIVE                | SO              | NS                 | 14   | 2000           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBPW       | ACTIVE                | TSSOP           | PW                 | 14   | 90             | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBPWE4     | ACTIVE                | TSSOP           | PW                 | 14   | 90             | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBPWR      | ACTIVE                | TSSOP           | PW                 | 14   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| CD4007UBPWRE4    | ACTIVE                | TSSOP           | PW                 | 14   | 2000           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD**: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.



**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T\*\*) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

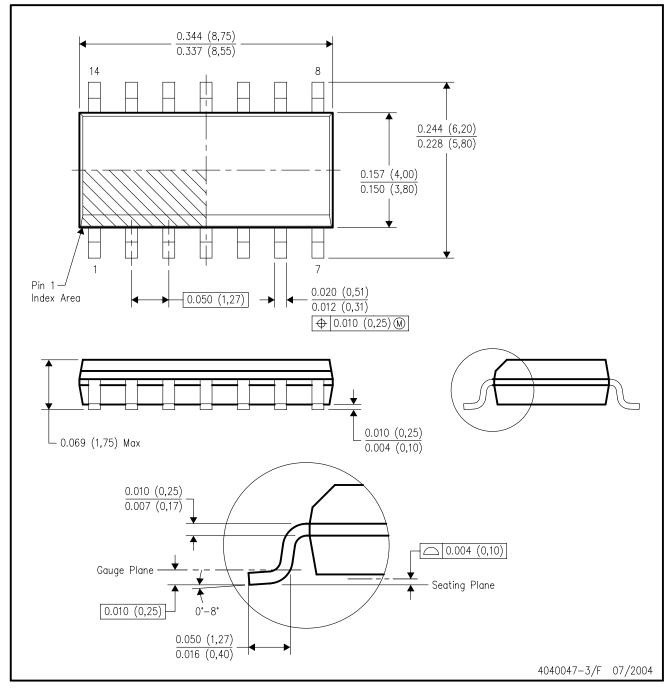
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN




NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AB.



## MECHANICAL DATA

## PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

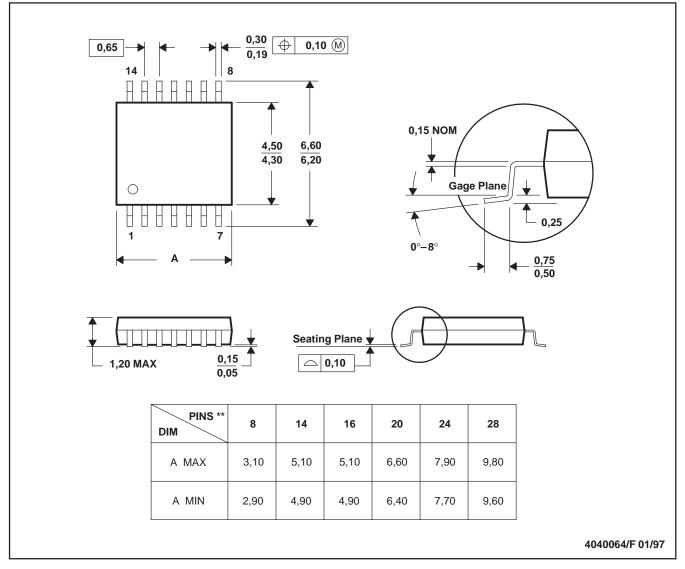
NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.




# **MECHANICAL DATA**

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

# PW (R-PDSO-G\*\*)

## PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated