Name: $\qquad$ Lab Section: $\qquad$
Problem 1 (3 points) Suppose a $1 \mu \mathrm{~m}$ wide wire in Metal 1 (M1) has resistance per unit length $r=100 \mathrm{~m} \Omega / \mathrm{mm}$ and capacitance per unit length $c=100 \mathrm{pF} / \mathrm{mm}$ while a $1 \mu \mathrm{~m}$ wide wire in Metal 2 (M2) has resistance per unit length $r=80 \mathrm{~m} \Omega / \mathrm{mm}$ and capacitance per unit length $c=120 \mathrm{pF} / \mathrm{mm}$. Using the Elmore delay approximation, what is the delay for

$$
\begin{aligned}
& \text { the fastest of the two wires assuming length } L=1.3 \mathrm{~mm} \text { ? } \\
& \tau_{D}=r C L^{2} \quad r C\left(M_{1}\right)=10,000 \mathrm{~m} \Omega \cdot \cdot \mathrm{PF} / \mathrm{mm}^{2} \\
& 2 r c(M 2)=9600 \mathrm{~m} \Omega \cdot \mathrm{pF}^{2} / \mathrm{mm}^{2} \\
& \text { (ipt.) } \\
& M 2 \text { fastest (1pt) } \\
& \tau_{D}\left(M_{2}\right)=\frac{9.6 \times 10^{3}(1.3)^{2}}{2}=\frac{8.112 \text { ps }}{\text { (ipt) }}
\end{aligned}
$$

Problem 2 (2 points) Using the Elmore delay approximation, what is the maximum length of a $1 \mu \mathrm{~m}$ wide wire in Metal 1 (M1) such that its delay is less than 25 ps ?

$$
\frac{r c L^{2}}{2} \leqslant 25 p s \Rightarrow L \leq \sqrt{\frac{2(25 p s)}{(100 \mathrm{~m} \Omega / \mathrm{mm})(100 \mathrm{pF} / \mathrm{mm})}}=\frac{2.24 \mathrm{~mm}}{\text { (1pt.) }}
$$

Problem 3 (5 points) For the inverter buffer chain below, assume the optimal fanout factor is $\mathrm{f}=4.4$ and a minimum size inverter has $\mathrm{W}_{\mathrm{n}}=0.45 \mu \mathrm{~m}$ and $\mathrm{W}_{\mathrm{p}}=1.35 \mu \mathrm{~m}$. How many stages N are required for a minimum delay through the chain and what are the transistor widths for the final inverter in the chain?

$$
N=5 \text { or } 6
$$

$\mathrm{W}_{\mathrm{n}}($ Nth inverter $)=168.7$ or $742 \mathrm{\mu m}$
$W_{p}($ Nth inverter $)=506 \mu \mathrm{~m}$ or $2226 \mu \mathrm{~m}$

$$
\begin{aligned}
F & =\frac{C_{L}}{C_{g 1}}=3141, f^{N}=F \\
N & =\frac{\ln (F)}{\ln (f)}=\frac{\ln (3141)}{\ln (4,4)} \quad \text { (1pt.) } \\
& =5.43
\end{aligned}
$$



$$
\begin{aligned}
& \text { for } N=5: W_{n}=(0.45 \mu \mathrm{~m})(4.4)^{(5-1)}=168.7 \mu \mathrm{~m} \\
& \omega_{p}=(1.35 \mu \mathrm{~m})(4.4)^{(5-1)}=506 \mu \mathrm{~m} \\
& \text { (1pt) } \\
& \text { for } N=6: W_{n}=(0.45 \mu \mathrm{~m})(4.4)^{(6-1)}=742 \mu \mathrm{~m} \\
& W_{p}=(1,35 \mu \mathrm{~m})(4,4)^{(6-1)}=2226 \mu \mathrm{~m}
\end{aligned}
$$

