Name: $\qquad$ Solutions Lab Section: $\qquad$
For all transistors: $\mathrm{L}_{\text {min }}=1 \mu \mathrm{~m}, \mathrm{~W}_{\min }=1 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{T}, \mathrm{p}}=-1 \mathrm{~V}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=(1 / 6) \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2}, \lambda_{\mathrm{p}}=$ $0.0 \mathrm{~V}^{-1}, \mathrm{~V}_{\mathrm{T}, \mathrm{n}}=1 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=(1 / 2) \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2}, \lambda_{\mathrm{n}}=0.0 \mathrm{~V}^{-1}$.

Problem 1 (5 points) Design a four-input static CMOS logic gate which implements the Boolean expression $F=\overline{A \bullet B \bullet C+D}$. Clearly label all inputs, outputs, and power supply connections. Pick sizes for the transistors such that the worst case rise and fall times of the output are equal to a minimum-sized inverter.


$$
\begin{gathered}
0.5 p^{t} . \text { ea, FET } \\
1 p^{+} . \text {labels }
\end{gathered}
$$

Problem 2 ( 5 points) A step input is applied at time $t=0$ to the loaded inverter with dimensions and initial conditions as shown below. What is the current $I_{L}$ immediately after the step is applied?

$$
\begin{aligned}
& \text { PMOS: } V_{G S}=-3 \mathrm{~V} \quad V_{D S}=-3.3 \mathrm{~V} \\
& V_{G S}-V_{T, P}=-2 V>V_{D S} \quad \text { saturation } \\
& \text { NMOS: } V_{\text {OS }}=0.3 \mathrm{~V}<V_{T, n}=1 \mathrm{~V} \text { cutoff } \quad(1 \text { pt.) } \\
& I_{L}=I_{\text {os, }}=\frac{\mu_{p} \operatorname{Cox}}{2}\left(\frac{W}{L}\right)\left(V_{\text {OS, }}-V_{T, p}\right)^{2} \quad(2 p+\text { t. }) \\
& =\frac{\left(1 / 6 \times 10^{-3} \mathrm{~A} / \mathrm{N}^{2}\right)}{2}\left(\frac{5}{1}\right)(-3.0 \mathrm{~V}--1 \mathrm{~V})^{2} \quad(0.5 \mathrm{p}+\mathrm{i}) \\
& =1.67 \mathrm{~mA}\left(0.5 \mathrm{pt}^{\mathrm{t}}\right)
\end{aligned}
$$

