
1.1 Parameters below apply to both source and drain.

Width $=1.5+2+1.5=5$ lambda $=450 \mathrm{~nm}$
Length $=1.5+2+2=5.5$ lambda $=495 \mathrm{~nm}$
Perimeter $=1 *$ width $+2 *$ lengths $=16$ lambda $=1440 \mathrm{~nm}$
Area $=$ Width $*$ Length $=27.5$ squared lambda $=222750$ square $\mathrm{nm}=0.22$ square um
1.2 PMOS with 3 times the width.

Parameters below apply to both source and drain.
New Width $=5$ lambda $* 3=15$ lambda $=1350 \mathrm{~nm}$
Length $=5.5$ lambda - same as before $=495 \mathrm{~nm}$
Perimeter $=1 *$ New Width $+2 *$ lengths $=26$ lambda $=2340 \mathrm{~nm}$
Area $=$ New width $*$ Length $=82.5$ squared lambda $=668250$ square $\mathrm{nm}=0.67$ square um
1.3 Doubling the length of a transistor will only change the length of the channel (2 lambda -> 4 lambda).

All parameters for the source and drain regions calculated in 1.1 and 1.2 above stay the same.

