EEC 116 Lecture #9: Coping With Interconnect

Rajeevan Amirtharajah
University of California, Davis
Announcements

• Lab 5 continues this week

• Homework 5 due Nov. 18

• Midterm curve being determined, will be posted shortly
Outline

• Review: Wire Models
• Minimum Delay Sizing
• Wires: Rabaey Ch. 4 and Ch. 9 (Kang & Leblebici, 6.5-6.6)
Wire Models

- Ideal Short Circuit
- Lumped Capacitor (C)
- Lumped RC
- Distributed RC
 - Ladder Filter (series R, shunt C)
- Distributed LC
 - Lossless Transmission Line (series L, shunt C)
- Distributed RLGC
 - Lossy Transmission Line (series L, R; shunt G, C)
Interconnect Models: Regions of Applicability

• For highest speed applications, wire must be treated as a transmission line
 – Includes distributed series resistance, inductance, capacitance, and shunt conductance (RLGC)

• Many applications it is sufficient to use lumped capacitance (C) or distributed series resistance-capacitance model (RC)

• Valid model depends on ratio of rise/fall times to time-of-flight along wire
 – l: wire length
 – v: propagation velocity (speed of light)
 – l/v: time-of-flight on wire
Interconnect Models: Regions of Applicability

• Transmission line modeling (inductance significant):

\[t_{\text{rise}} (t_{\text{fall}}) < 2.5 \times (l / v) \]

• Either transmission line or lumped modeling:

\[2.5 \times (l / v) < t_{\text{rise}} (t_{\text{fall}}) < 5 \times (l / v) \]

• Lumped modeling:

\[t_{\text{rise}} (t_{\text{fall}}) > 5 \times (l / v) \]
Resistance

- Resistance proportional to length and inversely proportional to cross section
- Depends on material constant resistivity ρ (\(\Omega\)-m)

\[
R = \frac{\rho L}{A} = \frac{\rho L}{tW} = R_{sq} \frac{L}{W} \quad R_{sq} = \frac{\rho}{t}
\]
Parallel-Plate Capacitance

- Width large compared to dielectric thickness, height small compared to width: E field lines orthogonal to substrate

\[C = \frac{\varepsilon_r}{h} WL \]
Total Capacitance Model

- Total capacitance per unit length is parallel-plate (area) term plus fringing-field term:

\[
c = C_{pp} + C_{fringe} = \frac{\varepsilon_r}{h} \left(W - \frac{t}{2} \right) + \frac{2\pi\varepsilon_r}{\log(2h/t + 1)}
\]

- Model is simple and works fairly well (Rabaey, 2nd ed.)
 - More sophisticated numerical models also available

- Process models often give both area and fringing (also known as sidewall) capacitance numbers per unit length of wire for each interconnect layer
• Elmore delay approximation for RC ladder network:

\[
\tau_{Di} = \sum_{i=1}^{N} C_i \sum_{j=1}^{i} R_{ji} = \sum_{i=1}^{N} C_i R_{ii} = RC \frac{N + 1}{2N}
\]
RC Ladder Network Delay

- Elmore delay approximation for RC ladder network:

\[t_{DN} = \frac{RC}{2} = \frac{rcL^2}{2} \quad \text{as} \quad N \to \infty \]
Distributed RC Model

\[V_{\text{in}} \quad r\Delta L \quad V_{i-1} \quad r\Delta L \quad V_i \quad \ldots \quad r\Delta L \quad V_{\text{out}} \]

- Differential equation at \(i \)th node (from KCL):

\[
c\Delta L \frac{\partial V_i}{\partial t} = \frac{(V_{i+1} - V_i) + (V_{i-1} - V_i)}{r\Delta L}
\]
• Step-response of an RC Wire as a function of time and space (Fig. 4-15, p. 157)

Source: Digital Integrated Circuits, 2nd ©
Intrinsic (Self-Load) and Extrinsic Capacitance
RC Switch Model for Inverter Sizing

\[C_{ext} = C_{wire} + C_g \]

- Model delay using ideal switch and resistor for MOSFET
Unloaded Inverter Delay

- Estimate delay using ideal switch and resistor model (RC time constant):
 \[t_{pd} \propto R_{eq} (C_i + C_{ext}) \]
 \[\propto R_{eq} C_i \left(1 + \frac{C_{ext}}{C_i}\right) \]
 \[\propto t_{p0} \left(1 + \frac{C_{ext}}{C_i}\right) \]

- Define intrinsic inverter delay (with fudge factor):
 \[t_{p0} = 0.69 R_{eq} C_i \]

- \(C_i \) consists of source / drain and overlap capacitance
Fastest Loaded Inverter Sizing

- Decrease delay by enlarging transistor (increases current, decreases R_{eq}) by factor S:

$$t_{pd} = 0.69 \left(\frac{R_{eq}}{S} SC_i \left(1 + \frac{C_{ext}}{SC_i} \right) \right)$$

$$t_{pd} = t_{p0} \left(1 + \frac{C_{ext}}{SC_i} \right)$$

- Intrinsic delay independent of sizing
- Infinite S yields fastest gate (eliminates external load), reducing delay to intrinsic in the limit
Relating Self-Load to Gate Capacitance

- Increasing transistor sizing enlarges self-load and gate input capacitance
- Convenient to relate them by a constant factor γ (γ around 1 in submicron processes)

$$C_i = \gamma C_g$$

$$t_{pd} = t_{p0} \left(1 + \frac{C_{ext}}{\gamma C_g}\right) = t_{p0} \left(1 + \frac{f}{\gamma}\right)$$

- f is effective fanout of gate
- Delay depends only on ratio between external load capacitance and input capacitance
Inverter Chain Sizing for Minimum Delay

Using inverter sizing, want to minimize delay of driving large load C_L

Optimize using equivalent resistance delay equation derived in previous slides

\[C_L = FCG_1 \]
Total Inverter Chain Delay

• Delay of the jth inverter stage is (ignoring wiring):

\[t_{pd,j} = t_{p0} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) = t_{p0} \left(1 + \frac{f_j}{\gamma} \right) \]

• Total delay is:

\[T_{pd} = \sum_{j=1}^{N} t_{pd,j} = t_{p0} \sum_{j=1}^{N} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) \]

where

\[C_{g,N+1} = C_L = FC_{g,1} \]
Optimal Inverter Sizing for Minimum Delay

• Minimize delay by taking partial derivatives wrt $C_{g,j}$, set them equal to 0
 – $N-1$ equations in N unknowns
 – Solution for jth inverter is geometric mean of its neighbors sizing:

 $$ C_{g,j} = \sqrt{C_{g,j-1} C_{g,j+1}} $$

• Implies each inverter has constant scale-up factor f_j:

 $$ f_j = f = \sqrt[N]{C_L/C_{g,1}} = \sqrt[N]{F} $$

• Minimum delay: $T_{pd} = Nt_{p0} \left(1 + \sqrt[N]{F}/\gamma \right)$
Optimal Inverter Stages for Minimum Delay

• Delay trade off in the number of stages N
 – Too many stages, intrinsic delay term dominates
 – Too few stages, extrinsic delay term due to fanout ratio dominates

• Taking derivative of T_{pd} wrt N and setting equal to zero yields equation to solve for scale up factor for optimal number of stages:

$$\gamma + \frac{N \sqrt{F}}{N} - \frac{N \sqrt{F} \ln F}{N} = 0$$
Optimal Inverter Stages for Minimum Delay

• Taking derivative of T_{pd} wrt N and setting equal to zero yields scale up factor for optimal number of stages:

$$f = e^\left(\frac{1+\gamma}{f}\right)$$

• Closed form solution when $\gamma = 0$, $N = \ln(F)$

$$f = e = 2.71828$$

• For more typical case of $\gamma = 1$, $f = 3.6$

• Often choose $f = 4$
Long Interconnect Delay

- Calculate delay by applying Elmore delay expression and switch RC model for driving inverter
Long Interconnect Delay

• Plugging in:

\[t_{pd} = 0.69R_{dr}C_{int} +
(0.69R_{dr} + 0.38R_w)C_w +
0.69(R_{dr} + R_w)C_{fan} \]

- \(R_{dr} \): driver resistance
- \(C_{int} \): driver intrinsic capacitance
- \(R_w \): total wire resistance
- \(C_w \): total wire capacitance
- \(C_{fan} \): input capacitance of fanout gate
Long Interconnect Delay

- Rearranging terms:

\[t_{pd} = 0.69 R_{dr} (C_{int} + C_{fan}) + \\
0.69(R_{dr} c_w + r_w C_{fan}) L + \\
0.38(r_w c_w) L^2 \]

- \(R_{dr} \): driver resistance
- \(C_{int} \): driver intrinsic capacitance
- \(r_w \): per unit length wire resistance
- \(c_w \): per unit length wire capacitance
- \(C_{fan} \): input capacitance of fanout gate
Optimal Inverter Sizing for Delay Constraint

- Problem: given a maximum propagation delay time $t_{p,max}$, find number of stages N and scaleup factor f s.t. overall area is minimized (i.e., find a solution that sets $T_{pd} = t_{p,max}$

$$T_{pd} = N t_{p0} F^{1/N} \geq t_{p,max}$$

- Solve numerically using integer programming (see Figure 9-8, Rabaey p. 455)
 - N between 1 and 10 for $F = 100-10^4$ and $t_{p,max}/t_{p0}$ between 10 and 10^4
Driver Area for Delay Constraint Sizing

• Driver area A_{dr} can be derived as function of minimum sized inverter area A_{min}:

$$A_{dr} = (1 + f + f^2 + \ldots + f^{N-1}) A_{min}$$

• Summing the power series yields:

$$A_{dr} = \left(\frac{f^N - 1}{f - 1} \right) A_{min} = \frac{F - 1}{f - 1} A_{min}$$

• Area inversely proportional to scaleup factor f
Driver Power for Delay Constraint Sizing

• Driver power P_{dr} can be derived as function of minimum sized inverter intrinsic capacitance C_i:

$$P_{dr} = (1 + f + f^2 + \ldots + f^{N-1}) C_i V_{DD}^2 f_{dr}$$

• Summing the power series yields:

$$P_{dr} = \frac{F - 1}{f - 1} C_i V_{DD}^2 f_{dr} \approx \frac{C_L}{f - 1} V_{DD}^2 f_{dr}$$

• Power inversely proportional to scaleup factor f, but f_{dr} constrained by $t_{p,max}$
Example

- Off-chip Capacitor Driver Sizing
• Calculate delay for N transmission gates in series by applying Elmore delay expression and switch RC model for transmission gate
Long Transmission Gate Chain Delay

Elmore delay expression:

$$\tau_D = 0.69 \sum_{k=1}^{N} CR_{eq} = 0.69R_{eq}C \frac{N(N+1)}{2}$$
Buffered Transmission Gate Chain

- Insert buffers (inverters) every m transmission gates to reduce delay
Buffered Transmission Gate Chain Delay

- Assume inverter has delay t_{inv} inserted every m transmission gates
- Plugging in:

$$\tau_D = 0.69 \left[\frac{N}{m} CR_{eq} \frac{m(m+1)}{2} \right] + \left(\frac{N}{m} - 1 \right) t_{inv}$$

$$\tau_D = 0.69 \left[CR_{eq} \frac{N(m+1)}{2} \right] + \left(\frac{N}{m} - 1 \right) t_{inv}$$

- Buffering results in linear dependence on number of switches N instead of quadratic
Optimal Buffer Insertion for Minimum Delay

- Minimize delay by taking partial derivative wrt m, set equal to 0:

 $$m_{opt} = 1.7 \sqrt{\frac{t_{inv}}{R_{eq}C}}$$

- Buffer insertion period depends on ratio of inverter delay and transmission gate switch RC delay

- Find minimum delay by plugging in m_{opt}
Minimum Buffered Transmission Gate Delay

\[\tau_D = 0.69 \left(\frac{CR_{eq}}{2} \right) \left(\frac{N(m_{opt} + 1)}{2} \right) + \left(\frac{N}{m_{opt}} - 1 \right) \tau_{inv} \]

\[\tau_D = 0.69 \left(\frac{CR_{eq}}{2} \right) \left(\frac{N \left(1.7 \sqrt{\frac{t_{inv}}{CR_{eq}}} + 1 \right)}{2} \right) + \left(\frac{N}{1.7 \sqrt{\frac{t_{inv}}{CR_{eq}}}} - 1 \right) \tau_{inv} \]

\[\tau_D \approx 0.69 \left(\frac{1.7N}{2} \sqrt{t_{inv} CR_{eq}} \right) + \frac{N \sqrt{t_{inv} CR_{eq}}}{1.7} \]

• Geometric mean dependence should look familiar!
Buffered Long Wire

- Insert inverters (repeaters) m times in a long wire of total resistance R and total capacitance C
- Assume inverters have delay t_{inv}, wire of length L and per unit length resistance r and capacitance c
- Find optimum number of repeaters m_{opt} as above
Optimal Repeater Insertion for Minimum Delay

- Minimize delay by taking partial derivative wrt m, set equal to 0:

$$m_{opt} = L \sqrt{\frac{0.38rc}{t_{inv}}} = \sqrt{\frac{t_{wire}}{t_{inv}}}$$

- t_{wire} is delay of unbuffered wire
- Corresponding minimum delay by plugging in m_{opt}

$$\tau_D = 2\sqrt{t_{wire}t_{inv}}$$

- Optimal delay found when each wire segment delay equals inverter delay
Long Interconnect Delay With Repeater Size

- Taking optimal repeater sizing (S) into account:

\[
\tau_D = m \left(0.69 \frac{R_{dr}}{S} \left[S\gamma C_{dr} + \frac{c_w L}{m} + SC_{dr} \right] + 0.69 r_w \left(\frac{L}{m} \right) (SC_{dr}) + 0.38 (r_w c_w) \left(\frac{L}{m} \right)^2 \right)
\]

- \(R_{dr} \): minimum-sized driver resistance
- \(C_{dr} \): minimum-sized driver intrinsic capacitance
- \(r_w \): per unit length wire resistance
- \(c_w \): per unit length wire capacitance
Optimal Repeater Design for Minimum Delay

- Minimize delay in usual fashion:

\[
m_{opt} = L \sqrt{\frac{0.38 r_w c_w}{0.69 R_{dr} C_{dr} (\gamma + 1)}} = \sqrt{\frac{t_{wire}}{t_{p0}(1+1/\gamma)}}
\]

\[
\tau_D = (1.38 + 1.02 \sqrt{1+\gamma}) L \sqrt{R_{dr} C_{dr} r_w c_w}
\]

\[
S_{opt} = \sqrt{\frac{R_{dr} C_w}{r_w C_{dr}}}
\]

- \(t_{p0}(1+1/\gamma)\) is delay of fanout of 1 (f = 1) inverter
Optimal Repeater Design for Minimum Delay

- Inserting repeaters linearizes delay dependence on length
- Optimal wire segment length exists for given technology and interconnect layer (Critical Length L_{crit}):

\[L_{\text{crit}} = \frac{L}{m_{\text{opt}}} = \sqrt{\frac{t_{p0} (1 + 1/\gamma)}{0.38r_w c_w}} \]

- Delay of a segment of critical length:

\[\tau_{D,\text{crit}} = \frac{\tau_D}{m_{\text{opt}}} = 2 \left(1 + \sqrt{\frac{0.69}{0.38(1+\gamma)}} \right) t_{p0} (1 + 1/\gamma) \]
If minimum delay is longer than clock cycle (which can be the case for global wires), then registers can be inserted to pipeline the wire.

Latency increases or stays the same, but throughput of wire increases.

One of many architecture-level options for long wires.
• Finite resistance of power/ground lines (total resistance R) causes voltage drops which degrade noise margins:

$$\Delta V < V_{out} < V_{DD} - \Delta V$$
Single Layer Power Grid

- Power routed vertically or horizontally on same layer
- VDD/GND brought in from two edges of chip
- Local power grids strapped to this grid and routed to lower metal layers
Dual Layer Power Grid

- Power routed vertically and horizontally on two layers
- VDD/GND brought in from all four edges of chip
- Local power grids strapped to this grid and routed to lower metal layers
- Can occupy 90% of two layers
Power Planes

- Devote two layers to power
- VDD/GND brought in from all four edges of chip
- Drastically reduces power supply resistance
- Can shield signal layers from crosstalk
- Need enough layers for routing
• Local supply bypass capacitance provides low impedance path for high frequency (switching) currents to flow, reducing drops on output voltage
Next Topic: Memories

• Memory principles and circuits
 – ROM: Read Only Memory
 – RWM (Read/Write Memory) or RAM (Random Access Memory)
 • DRAM, SRAM
 – Nonvolatile memories (Flash, PROM, EEPROM)