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Announcements

• Lab 5 continues this week 

• Homework 5 due Nov. 18

• Midterm curve being determined, will be posted 
shortly
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Outline

• Review: Wire Models

• Minimum Delay Sizing

• Wires: Rabaey Ch. 4 and Ch. 9 (Kang & Leblebici, 
6.5-6.6)
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Wire Models

• Ideal Short Circuit

• Lumped Capacitor (C)

• Lumped RC

• Distributed RC

– Ladder Filter (series R, shunt C)

• Distributed LC

– Lossless Transmission Line (series L, shunt C)

• Distributed RLGC 

– Lossy Transmission Line (series L, R; shunt G, C)
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Interconnect Models: Regions of Applicability
• For highest speed applications, wire must be treated as 

a transmission line
– Includes distributed series resistance, inductance, 

capacitance, and shunt conductance (RLGC) 
• Many applications it is sufficient to use lumped 

capacitance (C) or distributed series resistance-
capacitance model (RC)

• Valid model depends on ratio of rise/fall times to time-
of-flight along wire 
– l: wire length
– v: propagation velocity (speed of light)
– l/v: time-of-flight on wire
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Interconnect Models: Regions of Applicability

• Transmission line modeling (inductance significant):

trise (tfall) < 2.5 x (l / v)

• Either transmission line or lumped modeling:

2.5 x (l / v) < trise (tfall) < 5 x (l / v)

• Lumped modeling:

trise (tfall) > 5 x (l / v)



Amirtharajah, EEC 116 Fall 2011 7

Resistance
• Resistance proportional to length and inversely 

proportional to cross section

• Depends on material constant resistivity ρ (Ω-m)
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Parallel-Plate Capacitance
• Width large compared to dielectric thickness, height 

small compared to width: E field lines orthogonal to 
substrate
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Total Capacitance Model

• Total capacitance per unit length is parallel-plate (area) 
term plus fringing-field term:

• Model is simple and works fairly well (Rabaey, 2nd ed.)

– More sophisticated numerical models also available

• Process models often give both area and fringing (also 
known as sidewall) capacitance numbers per unit 
length of wire for each interconnect layer
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RC Ladder Network Delay

• Elmore delay approximation for RC ladder network:
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RC Ladder Network Delay

• Elmore delay approximation for RC ladder network:
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Distributed RC Model

• Differential equation at ith node (from KCL):
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Distributed RC Wire Step Response
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• Step-response of an RC Wire as a function of time and space 
(Fig. 4-15, p. 157)
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Intrinsic (Self-Load) and Extrinsic Capacitance 

wireCgC iC
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RC Switch Model for Inverter Sizing 

wireCiC

gC
gwireext CCC +=

eqR

• Model delay using ideal switch and resistor for MOSFET
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Unloaded Inverter Delay
• Estimate delay using ideal switch and resistor model 

(RC time constant):

• Define intrinsic inverter delay (with fudge factor):

• Ci consists of source / drain and overlap capacitance
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Fastest Loaded Inverter Sizing 
• Decrease delay by enlarging transistor (increases 

current, decreases Req) by factor S:

• Intrinsic delay independent of sizing
• Infinite S yields fastest gate (eliminates external load), 

reducing delay to intrinsic in the limit
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Relating Self-Load to Gate Capacitance 
• Increasing transistor sizing enlarges self-load and gate 

input capacitance
• Convenient to relate them by a constant factor γ (γ 

around 1 in submicron processes)

• f is effective fanout of gate
• Delay depends only on ratio between external load 

capacitance and input capacitance

( )γ
γ

ft
C

Ctt p
g

ext
ppd +=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= 11 00

gi CC γ=



Amirtharajah, EEC 116 Fall 2011 19

Inverter Chain Sizing for Minimum Delay 

1gL FCC =1gC

• Using inverter sizing, want to minimize delay of driving 
large load CL

• Optimize using equivalent resistance delay equation 
derived in previous slides

1 2 N
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Total Inverter Chain Delay 
• Delay of the jth inverter stage is (ignoring wiring):

• Total delay is:

where
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Optimal Inverter Sizing for Minimum Delay 
• Minimize delay by taking partial derivatives wrt Cg,j , set 

them equal to 0
– N-1 equations in N unknowns
– Solution for jth inverter is geometric mean of its 

neighbors sizing:

• Implies each inverter has constant scale-up factor fj:

• Minimum delay:
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Optimal Inverter Stages for Minimum Delay 
• Delay trade off in the number of stages N

– Too many stages, intrinsic delay term dominates
– Too few stages, extrinsic delay term due to fanout ratio 

dominates

• Taking derivative of Tpd wrt N and setting equal to zero 
yields equation  to solve for scale up factor for optimal 
number of stages:
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Optimal Inverter Stages for Minimum Delay 
• Taking derivative of Tpd wrt N and setting equal to zero 

yields scale up factor for optimal number of stages:

• Closed form solution when                ,  

• For more typical case of             , 

• Often choose
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Long Interconnect Delay

• Calculate delay by applying Elmore delay expression 
and switch RC model for driving inverter 

rw,cw,L

intC fanC

inV outV
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Long Interconnect Delay

• Plugging in:

– Rdr: driver resistance
– Cint: driver intrinsic capacitance
– Rw: total wire resistance
– Cw: total wire capacitance
– Cfan : input capacitance of fanout gate
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Long Interconnect Delay

• Rearranging terms:

– Rdr: driver resistance
– Cint: driver intrinsic capacitance
– rw: per unit length wire resistance
– cw: per unit length wire capacitance
– Cfan : input capacitance of fanout gate
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Optimal Inverter Sizing for Delay Constraint 
• Problem: given a maximum propagation delay time 

tp,max, find number of stages N and scaleup factor f s.t. 
overall area is minimized (i.e., find a solution that sets 
Tpd = tp,max

• Solve numerically using integer programming (see 
Figure 9-8, Rabaey p. 455)
– N between 1 and 10 for F = 100-104 and tp,max/tp0 

between 10 and 104

maxp
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Driver Area for Delay Constraint Sizing
• Driver area Adr can be derived as function of minimum 

sized inverter area Amin:

• Summing the power series yields:

• Area inversely proportional to scaleup factor f
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Driver Power for Delay Constraint Sizing
• Driver power Pdr can be derived as function of minimum 

sized inverter intrinsic capacitance Ci:

• Summing the power series yields:

• Power inversely proportional to scaleup factor f, but fdr
constrained by tp,max
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Example

• Off-chip Capacitor Driver Sizing
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Long Transmission Gate Chain Delay

• Calculate delay for N transmission gates in series by 
applying Elmore delay expression and switch RC 
model for transmission gate 
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Long Transmission Gate Chain Delay

• Elmore delay expression: 
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Buffered Transmission Gate Chain

• Insert buffers (inverters) every m transmission gates 
to reduce delay 

C C

inV outV…

C

…
m



Amirtharajah, EEC 116 Fall 2011 34

Buffered Transmission Gate Chain Delay

• Assume inverter has delay tinv inserted every m
transmission gates

• Plugging in:

• Buffering results in linear dependence on number of 
switches N instead of quadratic
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Optimal Buffer Insertion for Minimum Delay 

• Minimize delay by taking partial derivative wrt m, set 
equal to 0:

• Buffer insertion period depends on ratio of inverter 
delay and transmission gate switch RC delay

• Find minimum delay by plugging in mopt
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Minimum Buffered Transmission Gate Delay

• Geometric mean dependence should look familiar!
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Buffered Long Wire

• Insert inverters (repeaters) m times in a long wire of 
total resistance R and total capacitance C

• Assume inverters have delay tinv, wire of length L
and per unit length resistance r and capacitance c

• Find optimum number of repeaters mopt as above

mC /

inV outVmR /
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Optimal Repeater Insertion for Minimum Delay 

• Minimize delay by taking partial derivative wrt m, set 
equal to 0:

• twire is delay of unbuffered wire
• Corresponding minimum delay by plugging in mopt

• Optimal delay found when each wire segment delay 
equals inverter delay
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Long Interconnect Delay With Repeater Size

• Taking optimal repeater sizing (S) into account:

– Rdr: minimum-sized driver resistance
– Cdr: minimum-sized driver intrinsic capacitance
– rw: per unit length wire resistance
– cw: per unit length wire capacitance
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Optimal Repeater Design for Minimum Delay 

• Minimize delay in usual fashion:

• tp0(1+1/γ) is delay of fanout of 1 (f = 1) inverter
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Optimal Repeater Design for Minimum Delay 

• Inserting repeaters linearizes delay dependence on 
length

• Optimal wire segment length exists for given 
technology and interconnect layer (Critical Length Lcrit):

• Delay of a segment of critical length:
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Pipelined Long Wire

• If minimum delay is longer than clock cycle (which can 
be the case for global wires), then registers can be 
inserted to pipeline the wire

• Latency increases or stays the same, but throughput 
of wire increases

• One of many architecture-level options for long wires
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Power Distribution Network Resistance

• Finite resistance of power/ground lines (total 
resistance R) causes voltage drops which degrade 
noise margins:

ΔV < Vout < VDD-ΔV

inV outV
R

R
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Single Layer Power Grid

• Power routed 
vertically or 
horizontally on 
same layer

• VDD/GND brought 
in from two edges 
of chip

• Local power grids 
strapped to this 
grid and routed to 
lower metal layers
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Dual Layer Power Grid

• Power routed 
vertically and 
horizontally on 
two layers

• VDD/GND brought 
in from all four 
edges of chip

• Local power grids 
strapped to this 
grid and routed to 
lower metal layers

• Can occupy 90% 
of two layers
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Power Planes

• Devote two layers 
to power

• VDD/GND brought 
in from all four 
edges of chip

• Drastically 
reduces power 
supply resistance

• Can shield signal 
layers from 
crosstalk

• Need enough 
layers for routing
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Power Distribution Bypass Capacitance

• Local supply bypass capacitance provides low 
impedance path for high frequency (switching) 
currents to flow, reducing drops on output voltage
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Next Topic: Memories 

• Memory principles and circuits

– ROM: Read Only Memory

– RWM (Read/Write Memory) or RAM (Random Access 
Memory)

• DRAM, SRAM

– Nonvolatile memories (Flash, PROM, EEPROM)
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