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Outline

• Review and Finish: Sequential Logic

• Wires: Rabaey Ch. 4 and Ch. 9 (Kang & Leblebici, 
6.5-6.6)
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Interconnect Modeling

• Early days of CMOS, wires could be treated as ideal for 
most digital applications, not so anymore!

• On-chip wires have resistance, capacitance, and 
inductance

– Similar to MOSFET charging, energy depends solely on 
capacitance

– Resistance might impact low power adiabatic charging, 
static current dissipation, speed

– Ignore inductance for all but highest speed designs

• Interconnect modeling is whole field of research itself!
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Interconnect Models: Regions of Applicability
• For highest speed applications, wire must be treated as 

a transmission line
– Includes distributed series resistance, inductance, 

capacitance, and shunt conductance (RLGC) 
• Many applications it is sufficient to use lumped 

capacitance (C) or distributed series resistance-
capacitance model (RC)

• Valid model depends on ratio of rise/fall times to time-
of-flight along wire 
– l: wire length
– v: propagation velocity (speed of light)
– l/v: time-of-flight on wire
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Interconnect Models: Regions of Applicability

• Transmission line modeling (inductance significant):

trise (tfall) < 2.5 x (l / v)

• Either transmission line or lumped modeling:

2.5 x (l / v) < trise (tfall) < 5 x (l / v)

• Lumped modeling:

trise (tfall) > 5 x (l / v)
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Resistance
• Resistance proportional to length and inversely 

proportional to cross section

• Depends on material constant resistivity ρ (Ω-m)
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Parallel-Plate Capacitance
• Width large compared to dielectric thickness, height 

small compared to width: E field lines orthogonal to 
substrate
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Fringing Field Capacitance

• When height comparable to width, must account for 
fringing field component as well
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Total Capacitance Model

• When height comparable to width, must account for 
fringing field component as well

• Model as a cylindrical conductor above substrate
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Total Capacitance Model

• Total capacitance per unit length is parallel-plate (area) 
term plus fringing-field term:

• Model is simple and works fairly well (Rabaey, 2nd ed.)

– More sophisticated numerical models also available

• Process models often give both area and fringing (also 
known as sidewall) capacitance numbers per unit 
length of wire for each interconnect layer

( )12log
2

2 +
+⎟

⎠
⎞

⎜
⎝
⎛ −=+=

th
tW

h
ccc rr

fringepp
πεε



Amirtharajah, EEC 116 Fall 2011 12

Alternative Total Capacitance Models

• For wide lines (w ≥ t/2) Kang & Leblebici Eq. 6.53:

• For narrow lines (w ≤ t/2) Kang & Leblebici Eq. 6.54:
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Capacitive Coupling
• Fringing fields can terminate on adjacent conductors 

as well as substrate

• Mutual capacitance between wires implies crosstalk, 
affects data dependency of power

substrate

dielectric
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Miller Capacitance
• Amount of charge moved onto mutual capacitance 

depends on switching of surrounding wires

• When adjacent wires move in opposite direction, 
capacitance is effectively doubled (Miller effect)
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Data Dependent Switched Capacitance 1
• When adjacent wires move in same direction, mutual 

capacitance is effectively eliminated

A CB OR A CB 0=effC

A CB OR A CB meff CC 4=

A CB OR A CB
meff CC 2=

A CB OR A CB
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Data Dependent Switched Capacitance 2
• When adjacent wires are static, mutual capacitance is 

effectively to ground

• Remember: it is the charging of capacitance where we 
account for energy from supply, not discharging

0 0B OR 1 1B

meff CC 2=1 0B OR 0 1B
0 1B OR 1 0B
1 1B OR 0 0B
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Lumped RC Model

• Simplest model used to represent the resistive and 
capacitive interconnect parasitics

• Propagation delay (same as FET switch model):
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RC T-Model

• Significantly improves accuracy of transient 
behavior over the lumped RC model

• Useful if simulation time is a bottleneck, much 
simpler than fully distributed model
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Tree-Structured RC Network
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Elmore Delay Formula
• Path Resistance Rii: Total resistance on unique path 

from source s to node i

• Shared Path Resistance Rik: Total resistance on shared 
branches in paths from source s to nodes i,k

• Elmore Delay Formula:
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RC Ladder Network Delay

• Elmore delay approximation for RC ladder network:
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RC Ladder Network Delay

• Elmore delay approximation for RC ladder network:
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Distributed RC Model

• Differential equation at ith node (from KCL):
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Distributed RC Model

• Limit                          yields diffusion equation:

• Approximate Solutions

2

2

x
V

t
Vrc

∂
∂

=
∂
∂

0→ΔL

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

t
RCerfctVout 4

)( RCt <<

RCtRCt
out eetV /4641.9/5359.2 266.0366.11)( −− +−=

RCt >>



Amirtharajah, EEC 116 Fall 2011 25

Repeater Insertion to Reduce Wire Delay 

NC /NC /

• Insert inverters along long wires at regular intervals
• Breaks up resistance and capacitance, reducing delay 

dramatically

1 2 N
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Inductance
• Inductance can be determined by direct application of 

definition:

• Can compute inductance directly from wire geometry 
and surrounding environment using field solver

• Simpler approach relates capacitance per length c with 
inductance per length l:

– Assumes uniform or “average” dielectric

dt
diLV =Δ

εμ=cl
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Summary
• Many important effects to consider in interconnect design

– Resistance, capacitance, inductance can all affect signal 
performance

– Long rise/fall time signals, only resistance and capacitance 
needs to be considered

• Several models useful for RC interconnect delay analysis

– Simple lumped (1 R, 1 C) model: easy to analyze and/or 
simulate, will be pessimistic

– T-model (2 Req = R/2, 1 C): more accurate than lumped

– Distributed model (N Req = R/N, N Ceq = C/N): most accurate, 
use Elmore delay approximation for hand analysis
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Next Topic: Design for Manufacturability

• Parameter variations in CMOS digital circuits

• Yield maximization and worst-case design
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