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Announcements

* Quiz 1 today!
* Lab 2 reports due this week
* Lab 3 this week

« HW 2 due this Wednesday at 4 PM in box,
Kemper 2131
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Outline

e Review: CMOS Inverter Transient Characteristics
 Review: Inverter Power Consumption

« Combinational MOS Logic Circuits: Rabaey 6.1-
6.2 (Kang & Leblebici, 7.1-7.4)

« Combinational MOS Logic Transient Response

— AC Characteristics, Switch Model
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Review: CMOS Inverter VTC

Plinear P cutoff
N cutoff | Vou=Vin-V, N linear

Voo [ ®
N

\

Vour=Vin-Von

Output Voltage (V)

nMOS in saturation

| pMOS in saturation

Input Voltage (V)
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Review: Logic Circuit Delay

* For CMOS (or almost all logic circuit families), only
one fundamental equation necessary to determine
delay:

dVv
| =C—
dt
| | | _ AV
- Consider the discretized version: | =C A—t

AV

. Rewrite to solve for delay: At =C —

* Only three ways to make faster logic: lC,lAV,TI
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Review: Inverter Delays

« High-to-low and low-to-high transitions (exact):

tPHL _ C|_ 2VTO,n n ln(4(VOH _VTO,n) B 1)
kn (VOH _VTO,n) _VOH _VTO,n VOH +VOL

P C, 2’\/T0,p| +ln[4(VOH —VoL _’VTO,p|) _1]
- kp (VOH _VOL _’\/TO,p‘) VOH _VOL _’VTO,p‘ VOH +VOL

« Similar exact method to find rise and fall times

* Note: to balance rise and fall delays (assuming Vo, =
Vs VoL =0V, and V¢ ,=V+ ;) requires

K (Wj (Wj o os
k. L),/ \LJ

n
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Review: Inverter Power Consumption

« Static power consumption (ideal) =0

— Actually DIBL (Drain-Induced Barrier Lowering),
gate leakage, junction leakage are still present

 Dynamic power consumption
l I v(t
1|7 dv,, dv,,
I:)anl = ?|: I Vout( CIoad dt t]dt_i_ J DD out {Cload thdt:|

0 T/2

1 V ) T/2 1 T
Pavg g (_ CIoad 0;] (V VoutCIoad _Ecloadvoutzj

0 T/2

avg - —load

_|

=C,. Vs

load
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Static CMOS

« Complementary pullup
network (PUN) and pulldown

network (PDN) ,r
e Only one network is on at a A
timg - B—— PUN
C—>
« PUN: PMOS devices
— Why? A
. PDN: NMOS devices g_,_’ PDN
— Why? =
« PUN and PDN are dual
networks
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Dual Networks

* Dual networks: parallel
connection in PDN = series

Example: NAND gate

connection in PUN, vice- parallel
versa — —[ &~
I
« If CMOS gate implements 85—t
logic function F: ‘”i
| _ & Series
— PUN implements function F

— PDN implements function G
=F
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NAND Gate

« NAND function: F = A<B

« PUN function: F=AB=A +B
— “Or” function (+) — parallel connection

— Inverted inputs A, B — PMOS transistors

« PDN function: G=F = A<B
— “And” function (¢) — series connection

— Non-inverted inputs — NMOS transistors
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NOR Gate

« NOR gate operation: F = A+B

- PUN:F=A+B=AB

- PDN:G=F =A+B
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Analysis of CMOS Gates

 Represent “on” transistors as resistors

Ll
) dC
=)
1-E§FWE> }R 1—LW R
14LW R

 Transistors in series — resistances in series
o Effective resistance = 2R
 Effective length = 2L

Amirtharajah, EEC 116 Fall 2011

12



Analysis of CMOS Gates (cont.)

* Represent “on” transistors as resistors
W %,R WdL d[ W R{ fR
0 _|: :> 0 :> §
\’ 0— \

« Transistors in parallel — resistances in parallel
 Effective resistance = 72 R
 Effective width = 2W
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CMOS Gates: Equivalent Inverter

 Represent complex gate as inverter for delay
estimation

« Typically use worst-case delays

 Example: NAND gate
— Worst-case (slowest) pull-up: only 1 PMOS “on”
— Pull-down: both NMOS “on”

df\ We df‘ We —dL Wp
—> -
"ﬂ Wi L %% Wy
A
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Example: Complex Gate

Design CMOS gate for this truth table:

A B C F
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0
F = A+(B+C)
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Example: Complex Gate

Design CMOS gate for this logic function:
F=A¢(B+C) = A + B«C

1. Find NMOS pulldown network diagram:
G =F =A«(B+C)

At
ot

Not a unique solution: can exchange order of
series connection
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Example: Complex Gate

2. Find PMQOS pullup network diagram: F = A+(B+C)

B
A-d
C

Not a unique solution: can exchange order of
series connection (B and C inputs)

Amirtharajah, EEC 116 Fall 2011
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Example: Complex Gate

Completed gate: . \wyhat is worse-case pullup delay?

B-d[ W,
A—-d[ W, * What is worse-case pulldown delay?
C—d[ W,
F « Effective inverter for delay calculation:
A-||flwN

B-Id C-Id W, —E A

N
AN
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CMOS Gate Design
 Designing a CMOS gate:

— Find pulldown NMOS network from logic function
or by inspection
— Find pullup PMOS network
* By inspection
 Using logic function
« Using dual network approach
— Size transistors using equivalent inverter

* Find worst-case pullup and pulldown paths
» Size to meet rise/fall or threshold requirements

Amirtharajah, EEC 116 Fall 2011
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Analysis of CMOS gates

 Represent “on” transistors as resistors

Ll
) dC
=)
1-|:5'W':> ;'R 1L W R
1—L W R

* Transistors in series — resistances in series
» Effective resistance = 2R
 Effective width = %2 W (equivalent to 2L)
» Typically use minimum length devices (L =L

min)
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Analysis of CMOS Gates (cont.)

* Represent “on” transistors as resistors
W %R WdL d[ W R{ fR
O“: :> 0 :> §
\’ 0— \

« Transistors in parallel — resistances in parallel
 Effective resistance = 72 R

» Effective width = 2W
« Typically use minimum length devices (L = Lmin)
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Equivalent Inverter

« CMOS gates: many paths to Vdd and Gnd

— Multiple values for V,,, V, , V4, etc
— Different delays for each input combination
 Equivalent inverter

— Represent each gate as an inverter with
appropriate device width

— Include only transistors which are on or switching

— Calculate V,,, delays, etc using inverter equations

Amirtharajah, EEC 116 Fall 2011
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Static CMOS Logic Characteristics

- For V,, the V,, of the equivalent inverter is used
(assumes all inputs are tied together)

— For specific input patterns, V,, will be different

 ForV, and V,,, only the worst case iIs interesting
since circuits must be designed for worst-case
noise margin

 For delays, both the maximum and minimum
must be accounted for in race analysis
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Equivalent Inverter: V,,

« Example: NAND gate threshold V,,
Three possibilities:

— A & B switch together
— A switches alone

— B switches alone

 What is equivalent inverter for each case?

Amirtharajah, EEC 116 Fall 2011
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Equivalent Inverter: Delay

 Represent complex gate as inverter for delay
estimation

« Use worse-case delays

 Example: NAND gate
— Worse-case (slowest) pull-up: only 1 PMOS “on”
— Pull-down: both NMOS “on”

4q Wpdﬂ‘ W —ql Wp
—> —

L Wi —L % W,

=L Wy
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Example: NOR gate

Amirtharajah, EEC 116 Fall 2011

* Find threshold voltage V,, when
both inputs switch
simultaneously

 Two methods:
— Transistor equations (complex)
— Equivalent inverter

— Should get same answer

26



Example: Complex Gate

Completed gate: .« What is worse-case pullup delay?

B-d[ W,
A-d[ W, * What is worse-case pulldown delay?
C-d[. W,
F « Effective inverter for delay calculation:
A-lqu

B-IHIWNC-I[: Wy _Ij % Wi

AN
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Transistor Sizing

« Sizing for switching threshold

— All inputs switch together

« Sizing for delay

— Find worst-case input combination

 Find equivalent inverter, use inverter analysis to
set device sizes

Amirtharajah, EEC 116 Fall 2011

28



Common CMOS Gate Topologies

 And-Or-Invert (AQOI)

— Sum of products boolean function

— Parallel branches of series connected NMOS
« Or-And-Invert (OAI)

— Product of sums boolean function

— Series connection of sets of parallel NMOS

Amirtharajah, EEC 116 Fall 2011
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Stick Diagrams

« Dimensionless layout sketches
 Only topology is important
« Two primary uses

— Useful intermediate step

» Transistor schematic is the first step
« Layout is the last step

— Final layout generated automatically by “compaction”

program

» Not widely used; a topic of research

 Use colored pencils or pens whose
colors match Cadence layer colors
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Inverter Stick Diagram

« Diagram here uses magic
standard color scheme

« Label all nodes

« Transistor widths (W) often
shown—with varying units

— Oftenin A in this class
— Also nm or um

— Sometimes as a unit-less
ratio—this stick diagram could
also say the PMOS is 1.5x
wider than the NMOS (saying
“1” and “1.5” instead of “6A” and
“Q)\”

Amirtharajah, EEC 116 Fall 2011
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Stick Diagrams

« Can also draw contacts
with an “ X”

Do not confuse this “X”
with the chip I/O and power
pads on the edge of chip
(shown with a box with an
“X") or any other markers

chip
core

Amirtharajah, EEC 116 Fall 2011

\Vdd

Gnd

32



Layout for the Inverter in the Stick Diagram
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Graph-Based Dual Network

« Use graph theory to help design gates
— Mostly implemented in CAD tools
 Draw network for PUN or PDN
— Circuit nodes are vertices

— Transistors are edges

e = ()

gnd
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Graph-Based Dual Network (2)

 To derive dual network:
— Create new node in each enclosed region of graph
— Draw new edge intersecting each original edge

— Edge is controlled by inverted input

vdd N1

B —d
F

— Convert to layout using consistent Euler paths

Amirtharajah, EEC 116 Fall 2011
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Propagation Delay Analysis - The Switch Model

1
|

(a) Inverter (b) 2-input NAND (¢) 2-input NOR

t, = 0.69 Ryy Cp

(assuming that C; dominates!)
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Switch Level Model

* Model transistors as switches with
series resistance

* Resistance R, = average resistance
for a transition

- Capacitance C, = average load
capacitance for a transition (same as
we analyzed for transient inverter

delays)

Amirtharajah, EEC 116 Fall 2011
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What is the Value of R,,?

- Depends strongly on the operating region

- For hand analysis use a fixed value of R which it the
average of the two end points of the transition

- Similar to the previous approach of averaging
currents

EXAMPLE: For t,y; for an inverter, the R, Is:

R = L\r
2

on 72))

oSV eur- Vo) T Bnaros Y out™ VoD

2\ Ip Vout = VDD Ip Vout = VoD’
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Switch Level Model Delays

Delay estimation using switch-level
model (for general RC circuit):

e L @Sy
Ry 5(\:___CL dt |
] =Y L =Ry
R V

t —t, =t _jﬁdv
VO

t, = RC[In(V,) —In(V,)|=RC h{ij
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Switch Level Model RC Delays
* For fall delay t,,;, Vo=Vpp, V1=Vpp/2

t, =RCln ://—1 ~RCIn 5\>/DD
0 DD
t, = RCIn(0.5)
o = 0-69R,C, <« Standard RC-delay
Con = 0'69RpCL equations from literature
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Numerical Examples
« Example resistances for 1.2 um CMOS

Viap =3V, Wileff=1 (W/ZeﬁZQ is @ minimum sized device 1.8um/0.9um)
Leﬁ = 1.2um-2( 15um)=0.9um

Ry(WiLeg=2)=(5V/046mA +25V/029mA)/2 =97k (for t,57)

|
R (W/Lyg=1)=9.7*2=19.4KkQ (for t,577)
R (W/Lyz=6)=(5V/0.57TmA + 2.5V /0.24mA)/2 =9.6 kQ (for £,1))

Ry(WiLgg=1)=9.6* 6 =57.6 k() (for #,1 )

SOLVE RC NETWORK TO DETERMINE DELAYS
Amirtharajah, EEC 116 Fall 2011 41



Analysis of Propagation Delay

Vop 1. Assume R,=R,=resistance of minimum
% R, % R, sized NMOS inverter
A \ R 2. Determine “Worst Case Input” transition
= (Delay depends on input values)

= C_ 3. Example: toLH for 2input NAND

B = - Worst case when only ONE PMOS Pulls
up the output node

- For 2 PMOS devices in parallel, the
resistance is lower

"N
Al toLy = 0.69R;C,

2-input NAND 4. Example: ty,, for 2input NAND
- Worst case : TWO NMOS in series

tonL = 0.69(2R,)C,

Amirtharajah, EEC 116 Fall 2011 42



Design for Worst Case

NAND Gate Complex Gate

Here it is assumed that Ry, = R,
Amirtharajah, EEC 116 Fall 2011 43



Fan-In and Fan-Out

o[ e[ df o

Ao

Beo—

Co—

Do

Fan-Out

Number of logic gates
connected to output

(2 FET gate capacitances
per fan-out)

Fan-In

Number of logical inputs
Quadratic delay term due to:
1. Resistance increasing
2.Capacitance increasing
for t,,,. (series NMOS)

t, proportional to a;FI + a,FI? + a;FO
Amirtharajah, EEC 116 Fall 2011
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Fast Complex Gates - Design Techniques

 Increase Transistor Sizing:

Works as long as Fan-out capacitance
dominates self capacitance (S/D cap increases
with increased width)

* Progressive Sizing:
Out

|nN_|lf‘ —T:CL

MI>M2>M3> MN

o it ©

1. <— Distributed RC-line
|

1 T Can Reduce Delay by more
In, J[Mi== € than 30%!

1=
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Fast Complex Gates - Design Techniques (2)

e Transistor Ordering
Place last arriving input closest to output node

critical path critical path

In3_I ﬂ/B__T:CL E1_|[Mf5;‘

|n2_| M2== C2 |n2_|

_/ In1_| M1 == Ci |n3_|

T,

<

o
|
S

iy
Iy

<
@
|

|||—I"

(b)

Amirtharajah, EEC 116 Fall 2011
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Fast Complex Gates - Design Techniques (3)

 Improved Logic Design

-

b =

D

Note Fan-Out capacitance is the same, but Fan-In
resistance lower for input gates (fewer series FETSs)

Amirtharajah, EEC 116 Fall 2011
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Fast Complex Gates - Design Techniques (4)
e Buffering: Isolate Fan-in from Fan-out

-
-

>3 1%

Keeps high fan-in resistance isolated from large
capacitive load C
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4 Input NAND Gate

Vbp
In1<=||fI In20||::Iz3a||:: In4a|Ew

In; _|

VDD

In, _

Out

In3 _

Ing

GND

IN1In2INn3 In4
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Capacitances in a 4 input NAND Gate

VDD
T
Cgs;, Csb, Cosq Csb,  Cgs, Csb, Cgsq Csby
N o T T
Cgd, Cdb, ©9% =g ] FrCdbs Cgd, Cdb,Cgd Cdb,
Cgd Cdb ot
1 .
In, —H Note that the value of Cload for calculating
oSy Csb, | propagation delay depends on which capacitances

need to be discharged or charged when the critical

Cgd Cdb,

In, E_-.H signal arrives.
gs Csb

° Example: In, =In;=1In,=1.1In,=0. In, switches from low

Cgd Cdb, to high. Hence, Nodes 3 and 4 are already discharged to
In; ’C_'H ground. In order for Vout to go from high to low... Vout
% CP: node and node 2 must be discharged.
Cgd cdb, CL=
In, Cgd5+Cgd7+Cgd8+2Cgd6(Miller)+Cdb5+Cdb6+Cdb7+Cd
Cos, Csb, p8+Cgdl+ Cdbl+ Cgsl+ Csbl+ 2Cgd2+ Cdb2+ Cw
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Next Topic: Arithmetic

« Computing arithmetic functions with CMOS logic
— Half adder and full adder circuits
— Circuit architectures for addition

— Array multipliers

Amirtharajah, EEC 116 Fall 2011
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