EEC 116 Lecture #4: CMOS Inverter AC Characteristics

Rajeevan Amirtharajah
University of California, Davis

Jeff Parkhurst
Intel Corporation
Acknowledgments

- Slides due to Rajit Manohar from ECE 547 Advanced VLSI Design at Cornell University
Announcements

• Lab 2 this week, report due next week
• Quiz 1 on Monday!
Outline

• Review: CMOS Inverter Transfer Characteristics
• Finish Lecture 3 slides
• CMOS Inverters: Rabaey 5.4-5.5 (Kang & Leblebici, 6.1-6.4, 6.7)
CMOS Inverter VTC: Device Operation

P linear
N cutoff
P linear
N sat
P sat
N sat
P sat
N linear
P cutoff
N linear
Logic Circuit Delay

• For CMOS (or almost all logic circuit families), only one fundamental equation necessary to determine delay:

\[I = C \frac{dV}{dt} \]

• Consider the discretized version:

\[I = C \frac{\Delta V}{\Delta t} \]

• Rewrite to solve for delay:

\[\Delta t = C \frac{\Delta V}{I} \]

• Only three ways to make faster logic: \(\downarrow C, \downarrow \Delta V, \uparrow I \)
CMOS Inverter Capacitances

- Assume input transition is fixed, then delay determined by output

Capacitance on node f (output):
- Junction cap Cdb,p and Cdb,n
- Gate capacitance Cgd,p and Cgd,n
- Interconnect cap
- Receiver gate cap
CMOS Inverter Junction Capacitances

- Junction capacitances $C_{db,p}$ and $C_{db,n}$:
 - Equation for junction cap:

\[
C_j(V) = \frac{AC_{j0}}{\left(1 - \frac{V}{\phi_0}\right)^m}, \quad C_{j0} = \left(\frac{\varepsilon\phi}{2N_aN_d} \frac{1}{\phi_0}\right)^m
\]

- Non-linear, depends on voltage across junction
- Use K_{eq} factor to get equivalent capacitance for a voltage transition

\[
C_{db} = AK_{eq}C_j + PK_{eqsw}C_{jsw}
\]
CMOS Inverter Gate Capacitances

• Gate capacitances $C_{GD,p}$ and $C_{GD,n}$:
 – Just after the input switches ($t = 0^+$), what regions are transistors in?
 – One is in cutoff: $C_{GD} = \text{Overlap Cap}$
 – One is in Saturation: $C_{GD} = \text{Overlap Cap}$
 – Therefore, gate-to-drain capacitance is due to overlap capacitance:

$$C_{gd,p} = C_{gd,n} = C_{ox}WL_D$$

However, also need to consider Miller effect ...
CMOS Inverter Capacitances: Miller Effect

- When input rises by ΔV, output falls by ΔV
 - Change in stored charge: $\Delta Q = C_{gd1}\Delta V - (-C_{gd1}\Delta V)$
 - Effective voltage change across C_{gd1} is $2\Delta V$
 - Effective capacitance to ground is \textit{twice} C_{gd1}

- Including Miller effect:
 \[C_{gd,p} = C_{gd,n} = 2C_{ox}WL_D \] (For transistor in Cutoff)
CMOS Inverter Capacitances: Receiver

- Receiver gate capacitance
 - Includes all capacitances of gate(s) connected to output node
 - Unknown region of operation for receiver transistor: total gate cap varies from $(2/3)WL_{Cox}$ to WL_{Cox}
 - Ignore Miller effect (taken into account on output)
 - Assume worst-case value, include overlap

\[
C_g = W L_{eff} C_{ox} + 2 W L_D C_{ox}
\]

\[
C_g = W L C_{ox}
\]
Inverter Capacitances: Analysis

• Simplify the circuit: combine all capacitances at output into one lumped linear capacitance:

\[C_{\text{load}} = 2 \times C_{gd,n} + 2 \times C_{gd,p} + C_{db,n} + C_{db,p} + C_{\text{int}} + C_g \]

Miller effect

• \(C_{sb,n} = C_{sb,p} = 0 \)

• \(C_{gs,n} \) and \(C_{gs,p} \) are not connected to the load. These are part of the gate capacitance \(C_g \)
First-Order Inverter Delay

- Suppose ideal voltage step at input
- Assume: Current charging or discharging capacitance C_{load} is nearly constant I_{avg}
 - $t_{PHL} = C_{load} \frac{(Vdd - Vdd/2)}{I_{avg}}$
 - $t_{PLH} = C_{load} \frac{(Vdd/2 - Vss)}{I_{avg}}$
Assume PMOS fully off (ideal step input, $I_{D,p} = 0$)

\[I = C \frac{dV}{dt} \]

\[I_{D,n} = C_{load} \frac{dV_{out}}{dt} \quad \Longrightarrow \quad \text{Need to determine } I_{D,n} \]
Inverter Delay: Falling

- From t_0 to t_1: NMOS in saturation
- From t_1 to t_2: NMOS in linear region
- Find I_D in each region
Inverter Delay: Falling $t_1 - t_0$

- Assumption: Input fast enough to go through transition before output voltage changes

- V_{out} drops from V_{OH} to $V_{DD} - V_{TN}$ (NMOS saturated)

\[
I_{DS} = k_n (V_{in} - V_{T0,n})^2 / 2 = k_n (V_{OH} - V_{T0,n})^2 / 2
\]

\[
\int_{t_0}^{t_1} dt = \frac{-2C_L}{k_n (V_{OH} - V_{T0,n})^2} \int_{V_{OH}}^{V_{OH} - V_{T0,n}} dV_{out}
\]

\[
t_1 - t_0 = \frac{2C_L V_{T0,n}}{k_n (V_{OH} - V_{T0,n})^2}
\]
Inverter Delay: Falling t_2-t_1

- V_{out} drops from $(V_{OH}-V_{T0,n})$ to $V_{DD}/2$
- NMOS in linear region

$$I_{DS} = k_n \left[(V_{OH} - V_{T0,n})V_{out} - \frac{1}{2}V_{out}^2 \right]$$

$$t_2 - t_1 = -C_L \int_{V_{OH}-V_{T0,n}}^{(V_{OH}+V_{OL})/2} \frac{dV_{out}}{k_n \left[(V_{OH} - V_{T0,n})V_{out} - \frac{1}{2}V_{out}^2 \right]}$$

$$t_2 - t_1 = \frac{C_L}{k_n (V_{OH} - V_{T0,n})} \ln \left[\frac{2(V_{OH} - V_{T0,n}) - (V_{OH} + V_{OL})/2}{(V_{OH} + V_{OL})/2} \right]$$
Inverter Delay: Falling, Total

- Total fall delay = \((t_1 - t_0) + (t_2 - t_1)\)

\[
t_{PHL} = \frac{C_L}{k_n(V_{OH} - V_{T0,n})} \left[\frac{2V_{T0,n}}{V_{OH} - V_{T0,n}} + \ln \left(\frac{4(V_{OH} - V_{T0,n})}{V_{OH} + V_{OL}} - 1 \right) \right]
\]
Inverter Delay: Rising

- Similar calculation as for falling delay
- Separate into regions where PMOS is in linear, saturation

\[
t_{PLH} = \frac{C_L}{k_p (V_{OH} - V_{OL} - |V_{T0, p}|)} \left[\frac{2|V_{T0, p}|}{V_{OH} - V_{OL} - |V_{T0, p}|} + \ln \left(\frac{4(V_{OH} - V_{OL} - |V_{T0, p}|)}{V_{OH} + V_{OL}} - 1 \right) \right]
\]

- Note: to balance rise and fall delays (assuming \(V_{OH} = V_{DD}\), \(V_{OL} = 0V\), and \(V_{T0, n} = V_{T0, p}\)) requires

\[
\frac{k_p}{k_n} = 1 \quad \frac{\left(\frac{W}{L} \right)_p}{\mu_n} = \frac{\mu_p}{\mu_n} \approx 2.5
\]
Inverter Rise, Fall Times

• Summary -- Exact method: separate into two regions

 – \(t_1 \)
 • \(V_{out} \) drops from \(0.9V_{DD} \) to \(V_{DD}-V_{T,n} \) (NMOS in saturation)
 • \(V_{out} \) rises from \(0.1V_{DD} \) to \(|V_{T,p}|\) (PMOS in saturation)

 – \(t_2 \)
 • \(V_{out} \) drops from \(V_{DD}-V_{T,n} \) to \(0.1V_{DD} \) (NMOS in linear region)
 • \(V_{out} \) rises from \(|V_{T,p}|\) to \(0.9V_{DD} \) (PMOS in linear region)

 – \(t_{f,r} = t_1 + t_2 \)
CMOS Inverter Delay

- Review of approximate method
 - Assume a constant average current for the transition
 - $I_{avg} =$ average of drain current at beginning and end of transition

\[
t_{PHL} = \frac{C_{load}}{I_{avg}} \left(V_{DD} - \frac{1}{2} V_{DD} \right)
\]

\[
t_{PLH} = \frac{C_{load}}{I_{avg}} \left(\frac{1}{2} V_{DD} - V_{SS} \right)
\]

$I_{avg} = \frac{1}{2}(I_1 + I_2)$
CMOS Inverter Delay: 2nd Approximation

• Another approximate method:
 – Again assume constant I_{avg}
 – $I_{\text{avg}} = \text{current } I_1$ at start of transition

\[
\begin{align*}
 t_{\text{PHL}} &= \frac{C_{\text{load}}V_{DD}}{k_n(V_{DD} - V_{Tn})^2} \\
 t_{\text{PLH}} &= \frac{C_{\text{load}}V_{DD}}{k_p(V_{DD} - |V_{TP}|)^2}
\end{align*}
\]

– Why is this a good approximation (esp. for deep submicron)?
CMOS Inverter Delay: Finite Input Transitions

- What if input has finite rise/fall time?
 - Both transistors are on for some amount of time
 - Capacitor charge/discharge current is reduced

Empirical equations:

\[t_{phl}(actual) = \sqrt{t_{phl}(step) + \left(\frac{t_r}{2}\right)^2} \]

\[t_{plh}(actual) = \sqrt{t_{plh}(step) + \left(\frac{t_f}{2}\right)^2} \]
How to Improve Delay?

• Minimize load capacitances
 – Small interconnect capacitance
 – Small \(C_g \) of next stage

• Raise supply voltage
 – Increases current faster than increased swing \(\Delta V \)

• Increase transistor gain factor
 – Increase transistor drive current for charging/discharging output capacitance

• Use low threshold voltage devices
 – More subthreshold leakage power dissipation
Inverter Power Consumption

- **Static power consumption (ideal) = 0**

 - Actually DIBL (Drain-Induced Barrier Lowering), gate leakage, junction leakage are still present

- **Dynamic power consumption**

\[
P_{\text{avg}} = \frac{1}{T} \int_0^T v(t)i(t)dt
\]

\[
P_{\text{avg}} = \frac{1}{T} \left[\int_0^{T/2} V_{\text{out}} \left(-C_{\text{load}} \frac{dV_{\text{out}}}{dt} \right) dt + \int_{T/2}^T \left(V_{DD} - V_{\text{out}} \right) \left(C_{\text{load}} \frac{dV_{\text{out}}}{dt} \right) dt \right]
\]

\[
P_{\text{avg}} = \frac{1}{T} \left[\left(-C_{\text{load}} \frac{V_{\text{out}}^2}{2} \right) \bigg|_0^{T/2} + \left(V_{DD}V_{\text{out}}C_{\text{load}} - \frac{1}{2} C_{\text{load}} V_{\text{out}}^2 \right) \bigg|_{T/2}^T \right]
\]

\[
P_{\text{avg}} = \frac{1}{T} C_{\text{load}} V_{DD}^2 = C_{\text{load}} V_{DD}^2 f
\]
Next Time: Combinational Logic and Layout

- Combinational MOS Logic
 - DC Characteristics, Equivalent Inverter method
 - AC Characteristics, Switch Model

- Combinational Logic Layout