EEC 116 Lecture #4: CMOS Inverter AC Characteristics

Rajeevan Amirtharajah
University of California, Davis
Jeff Parkhurst
Intel Corporation

Acknowledgments

Slides due to Rajit Manohar from ECE 547
 Advanced VLSI Design at Cornell University

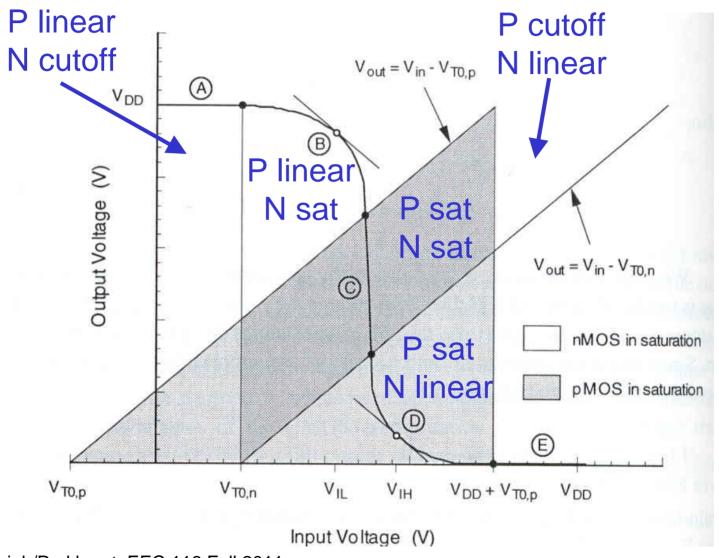
Announcements

- Lab 2 this week, report due next week
- Quiz 1 on Monday!

Outline

- Review: CMOS Inverter Transfer Characteristics
- Finish Lecture 3 slides
- CMOS Inverters: Rabaey 5.4-5.5 (Kang & Leblebici, 6.1-6.4, 6.7)

CMOS Inverter VTC: Device Operation



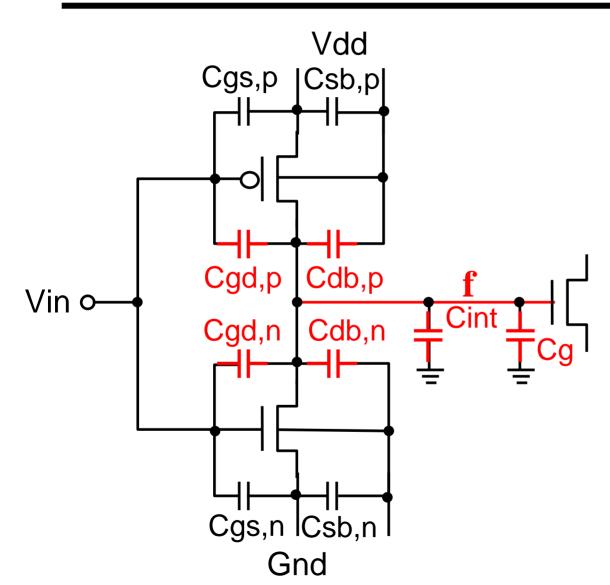
Logic Circuit Delay

 For CMOS (or almost all logic circuit families), only one fundamental equation necessary to determine delay:

$$I = C \frac{dV}{dt}$$

- Consider the discretized version: $I = C \frac{\Delta V}{\Delta t}$
- Rewrite to solve for delay: $\Delta t = C \frac{\Delta V}{I}$
- Only three ways to make faster logic: ↓C, ↓∆V, ↑I

CMOS Inverter Capacitances



 Assume input transition is fixed, then delay determined by output

Capacitance on node f (output):

- Junction cap
 Cdb,p and Cdb,n
- Gate capacitance
 Cgd,p and Cgd,n
- Interconnect cap
- Receiver gate cap

CMOS Inverter Junction Capacitances

- Junction capacitances C_{db,p} and C_{db,n}:
 - Equation for junction cap:

$$C_{j}(V) = \frac{AC_{j0}}{\left(1 - \frac{V}{\phi_{0}}\right)^{m}}, \qquad C_{j0} = \left(\frac{\varepsilon q}{2} \frac{N_{a}N_{d}}{N_{a} + N_{d}} \frac{1}{\phi_{0}}\right)^{m}$$

- Non-linear, depends on voltage across junction
- Use K_{eq} factor to get equivalent capacitance for a voltage transition

$$C_{db} = AK_{eq}C_j + PK_{eqsw}C_{jsw}$$

CMOS Inverter Gate Capacitances

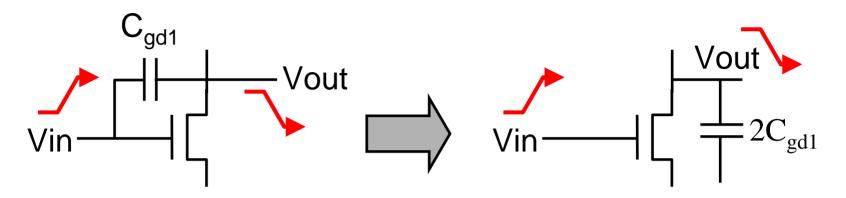
Gate capacitances C_{GD,p} and C_{GD,n}:

- Just after the input switches(t = 0+), what regions are transistors in?
- One is in cutoff: C_{GD} = Overlap Cap
- One is in Saturation: C_{GD} = Overlap Cap
- Therefore, gate-to-drain capacitance is due to overlap capacitance :

$$C_{gd,p} = C_{gd,n} = C_{ox}WL_D$$

However, also need to consider Miller effect ...

CMOS Inverter Capacitances: Miller Effect



When input rises by ∆V, output falls by ∆V

- Change in stored charge: $\Delta Q = C_{gd1}\Delta V (-C_{gd1}\Delta V)$
- Effective voltage change across C_{ad1} is $2\Delta V$
- Effective capacitance to ground is twice C_{gd1}

• Including Miller effect:

$$C_{gd,n} = C_{gd,n} = 2C_{ox}WL_D$$
 (For transistor in Cutoff)

CMOS Inverter Capacitances: Receiver

Receiver gate capacitance

- Includes all capacitances of gate(s) connected to output node
- Unknown region of operation for receiver transistor: total gate cap varies from (2/3)WLC_{ox} to WLC_{ox}
- Ignore Miller effect (taken into account on output)
- Assume worst-case value, include overlap

$$C_g = WL_{eff}C_{ox} + 2WL_DC_{ox}$$

$$C_g = WL C_{ox}$$

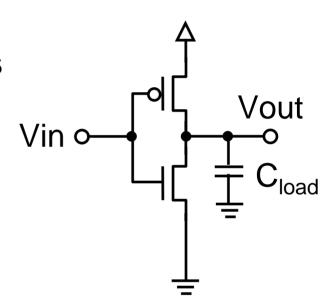
Inverter Capacitances: Analysis

 Simplify the circuit: combine all capacitances at output into one lumped linear capacitance:

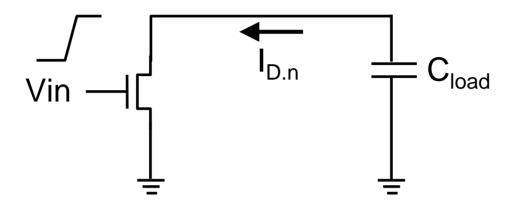
- Csb,n = Csb,p = 0
- Cgs,n and Cgs,p are not connected to the load.
 These are part of the gate capacitance Cg

First-Order Inverter Delay

- Suppose ideal voltage step at input
- Assume: Current charging or discharging capacitance C_{load} is nearly constant I_{avg}
- $t_{PHL} = C_{load} (Vdd Vdd/2) / I_{avg}$
- $t_{PLH} = C_{load} (Vdd/2 Vss) / I_{avg}$



Inverter Delay: Falling

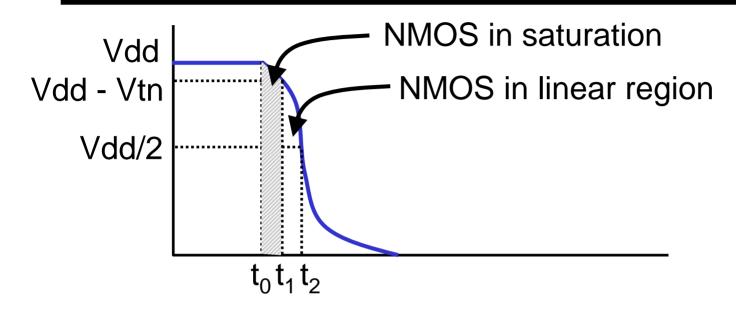


• Assume PMOS fully off (ideal step input, $I_{D,p} = 0$)

$$I = C \frac{dV}{dt}$$

$$I_{D,n} = C_{load} \frac{dV_{out}}{dt} \implies \text{Need to determine } I_{D,n}$$

Inverter Delay: Falling



- From t₀ to t₁: NMOS in saturation
- From t₁ to t₂: NMOS in linear region
- Find I_D in each region

Inverter Delay: Falling t₁-t₀

- Assumption: Input fast enough to go through transition before output voltage changes
- V_{out} drops from V_{OH} to V_{DD}-V_{TN} (NMOS saturated)

$$I_{DS} = k_n (V_{in} - V_{T0,n})^2 / 2 = k_n (V_{OH} - V_{T0,n})^2 / 2$$

$$\int_{t_0}^{t_1} dt = \frac{-2C_L}{k_n (V_{OH} - V_{T0,n})^2} \int_{V_{OH}}^{V_{OH} - V_{T0,n}} dV_{out}$$

$$t_1 - t_0 = \frac{2C_L V_{T0,n}}{k_n (V_{OH} - V_{T0,n})^2}$$

Inverter Delay: Falling t₂-t₁

- V_{out} drops from (V_{OH}-V_{T0,n}) to V_{DD}/2
- NMOS in linear region

$$I_{DS} = k_n \left[(V_{OH} - V_{T0,n}) V_{out} - \frac{1}{2} V_{out}^2 \right]$$

$$t_{2} - t_{1} = -C_{L} \int_{V_{OH} - V_{T0,n}}^{(V_{OH} + V_{OL})/2} \frac{dV_{out}}{k_{n} \left[(V_{OH} - V_{T0,n})V_{out} - \frac{1}{2}V_{out}^{2} \right]}$$

$$t_2 - t_1 = \frac{C_L}{k_n (V_{OH} - V_{T0,n})} \ln \left[\frac{2(V_{OH} - V_{T0,n}) - (V_{OH} + V_{OL})/2}{(V_{OH} + V_{OL})/2} \right]$$

Inverter Delay: Falling, Total

• Total fall delay = $(t_1-t_0) + (t_2-t_1)$

$$t_{PHL} = \frac{C_L}{k_n (V_{OH} - V_{T0,n})} \left[\frac{2V_{T0,n}}{V_{OH} - V_{T0,n}} + \ln \left(\frac{4(V_{OH} - V_{T0,n})}{V_{OH} + V_{OL}} - 1 \right) \right]$$

Inverter Delay: Rising

- Similar calculation as for falling delay
- Separate into regions where PMOS is in linear, saturation

$$t_{PLH} = \frac{C_L}{k_p (V_{OH} - V_{OL} - |V_{T0,p}|)} \left[\frac{2|V_{T0,p}|}{V_{OH} - V_{OL} - |V_{T0,p}|} + \ln \left(\frac{4(V_{OH} - V_{OL} - |V_{T0,p}|)}{V_{OH} + V_{OL}} - 1 \right) \right]$$

• Note: to balance rise and fall delays (assuming $V_{OH} = V_{DD}$, $V_{OL} = 0V$, and $V_{T0,n} = V_{T0,p}$) requires

$$\frac{k_p}{k_n} = 1 \qquad \frac{\left(\frac{W}{L}\right)_p}{\left(\frac{W}{L}\right)_n} = \frac{\mu_n}{\mu_p} \approx 2.5$$

Inverter Rise, Fall Times

Summary -- Exact method: separate into two regions

- $-t_1$
 - V_{out} drops from $0.9V_{DD}$ to V_{DD} - $V_{T,n}$ (NMOS in saturation)
 - V_{out} rises from 0.1V_{DD} to |V_{T,p}| (PMOS in saturation)
- $-t_2$
 - V_{out} drops from V_{DD}-V_{T,n} to 0.1V_{DD} (NMOS in linear region)
 - V_{out} rises from $|V_{T,p}|$ to 0.9 V_{DD} (PMOS in linear region)
- $t_{f,r} = t_1 + t_2$

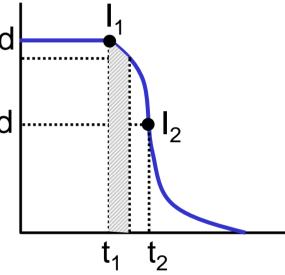
CMOS Inverter Delay

Review of approximate method

- Assume a constant average current for the transition
- I_{avg} = average of drain $V_2=\frac{1}{2}Vdc$ current at beginning and end of transition

$$t_{PHL} = \frac{C_{load}}{I_{avg}} \left(V_{DD} - \frac{1}{2} V_{DD} \right)$$

$$t_{PLH} = \frac{C_{load}}{I_{avg}} \left(\frac{1}{2} V_{DD} - V_{SS}\right)$$



$$I_{avg} = \frac{1}{2}(I_1 + I_2)$$

CMOS Inverter Delay: 2nd Approximation

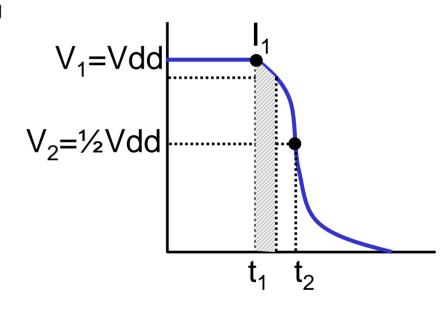
Another approximate method:

- Again assume constant I_{avg}
- I_{avg} = current I₁ at start of transition

$$t_{PHL} = \frac{C_{load}V_{DD}}{k_{n}(V_{DD} - V_{Tn})^{2}}$$

$$t_{PLH} = \frac{C_{load}V_{DD}}{k_{n}(V_{DD} - |V_{TP}|)^{2}}$$

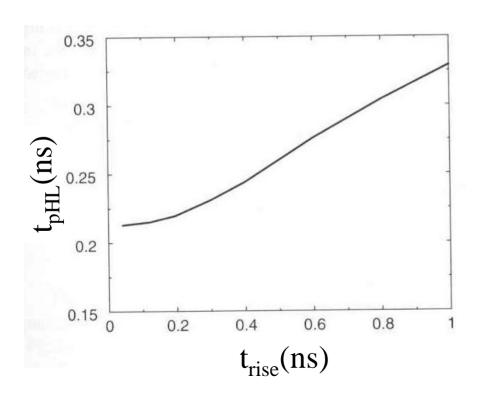
– Why is this a good approximation (esp. for deep submicron)?



$$I_{avg} = I_1$$

CMOS Inverter Delay: Finite Input Transitions

- What if input has finite rise/fall time?
 - Both transistors are on for some amount of time
 - Capacitor charge/discharge current is reduced



Empirical equations:

$$t_{phl}(actual) = \sqrt{t_{phl}^2(step) + \left(\frac{t_r}{2}\right)^2}$$

$$t_{plh}(actual) = \sqrt{t_{plh}^2(step) + \left(\frac{t_f}{2}\right)^2}$$

How to Improve Delay?

Minimize load capacitances

- Small interconnect capacitance
- Small Cg of next stage
- Raise supply voltage
 - Increases current faster than increased swing ΔV
- Increase transistor gain factor
 - Increase transistor drive current for charging/discharging output capacitance
- Use low threshold voltage devices
 - More subthreshold leakage power dissipation

Inverter Power Consumption

- Static power consumption (ideal) = 0
 - Actually DIBL (Drain-Induced Barrier Lowering), gate leakage, junction leakage are still present
- Dynamic power consumption

$$P_{avg} = \frac{1}{T} \int_{0}^{T} v(t)i(t)dt$$

$$P_{avg} = \frac{1}{T} \left[\int_{0}^{T/2} V_{out} \left(-C_{load} \frac{dV_{out}}{dt} \right) dt + \int_{T/2}^{T} \left(V_{DD} - V_{out} \right) \left(C_{load} \frac{dV_{out}}{dt} \right) dt \right]$$

$$P_{avg} = \frac{1}{T} \left[\left(-C_{load} \frac{V_{out}^{2}}{2} \right) \Big|_{0}^{T/2} + \left(V_{DD} V_{out} C_{load} - \frac{1}{2} C_{load} V_{out}^{2} \right) \Big|_{T/2}^{T} \right]$$

$$P_{avg} = \frac{1}{T} C_{load} V_{DD}^{2} = C_{load} V_{DD}^{2} f$$

Next Time: Combinational Logic and Layout

- Combinational MOS Logic
 - DC Characteristics, Equivalent Inverter method
 - AC Characteristics, Switch Model
- Combinational Logic Layout