EEC 116 Lecture #3: CMOS Inverters MOS Scaling

Rajeevan Amirtharajah
University of California, Davis

Jeff Parkhurst
Intel Corporation
Outline

• Review: Inverter Transfer Characteristics
• Lecture 3: Noise Margins, Rise & Fall Times, Inverter Delay
• CMOS Inverters: Rabaey 1.3.2, 5 (Kang & Leblebici, 5.1-5.3 and 6.1-6.2)
Review: Inverter Voltage Transfer Curve

Voltage transfer curve (VTC): plot of output voltage Vout vs. input voltage Vin

Ideal digital inverter:
- When Vin=0, Vout=Vdd
- When Vin=Vdd, Vout=0
- Sharp transition region
Review: Actual Inverter Output Levels

- \(V_{OH} \) and \(V_{OL} \) represent the “high” and “low” output voltages of the inverter.
- \(V_{OH} \) = output voltage when \(V_{in} \) = ‘0’ (\(V \) Output High)
- \(V_{OL} \) = output voltage when \(V_{in} \) = ‘1’ (\(V \) Output Low)
- Ideally,
 - \(V_{OH} = V_{dd} \)
 - \(V_{OL} = 0 \ V \)
Review: VOL and VOH

• In transfer function terms:
 - \(V_{OL} = f(V_{OH}) \)
 - \(V_{OH} = f(V_{OL}) \)
 - \(f = \) inverter transfer function

• Difference \((V_{OH} - V_{OL})\) is the voltage swing of the gate
 - Full-swing logic swings from ground to \(V_{dd} \)
 - Other families with smaller swings
Inverter switching threshold:

- Point where voltage transfer curve intersects line $V_{out}=V_{in}$
- Represents the point at which the inverter switches state
- Normally, $V_M \approx V_{dd}/2$
- Sometimes other thresholds desirable
VTC Mathematical Definitions

• V_{OH} is the output high level of an inverter
 \[V_{OH} = VTC(V_{OL}) \]

• V_{OL} is the output low level of an inverter
 \[V_{OL} = VTC(V_{OH}) \]

• V_M is the switching threshold
 \[V_M = V_{IN} = V_{OUT} \]

• V_{IH} is the lowest input voltage for which the output will be \geq the input (worst case ‘1’)
 \[\frac{dV_{TC}(V_{IH})}{dV_{IH}} = -1 \]

• V_{IL} is the highest input voltage for which the output will be \leq the input (worst case ‘0’)
 \[\frac{dV_{TC}(V_{IL})}{dV_{IL}} = -1 \]
Noise Margin and Delay Definitions

- \(N_M_L \) is the difference between the highest acceptable ‘0’ and the lowest possible ‘0’
 \[N_M_L = V_{IL} - V_{OL} \]
- \(N_M_H \) is the difference between the lowest acceptable ‘1’ and the highest possible ‘1’
 \[N_M_H = V_{OH} - V_{IH} \]
- \(t_{PHL} \) is the propagation delay from the 50% point of the input to the output when the output goes from high to low
- \(t_{PLH} \) is the propagation delay from the 50% point of the input to the output when the output goes from low to high
- \(t_P \) is the average propagation delay
- \(t_R \) is the rise time (usually 10% to 90%)
- \(t_F \) is the fall time (usually 90% to 10%)
CMOS Inverter

- Complementary NMOS and PMOS devices
- In steady-state, only one device is on (no static power consumption)
 - $V_{\text{in}} = 1$: NMOS on, PMOS off
 - $V_{\text{out}} = V_{\text{OL}} = 0$
 - $V_{\text{in}} = 0$: PMOS on, NMOS off
 - $V_{\text{out}} = V_{\text{OH}} = V_{\text{dd}}$
- Ideal V_{OL} and V_{OH}!
- Ratioless logic: output is independent of transistor sizes in steady-state
CMOS Inverter: VTC

- Output goes completely to Vdd and Gnd
- Sharp transition region
CMOS Inverter Operation

• NMOS transistor:
 – Cutoff if $V_{in} < V_{TN}$
 – Linear if $V_{out} < V_{in} - V_{TN}$
 – Saturated if $V_{out} > V_{in} - V_{TN}$

• PMOS transistor
 – Cutoff if $(V_{in} - V_{DD}) > V_{TP} \rightarrow V_{in} > V_{DD} + V_{TP}$
 – Linear if $(V_{out} - V_{DD}) > V_{in} - V_{DD} - V_{TP} \rightarrow V_{out} > V_{in} - V_{TP}$
 – Sat. if $(V_{out} - V_{DD}) < V_{in} - V_{DD} - V_{TP} \rightarrow V_{out} < V_{in} - V_{TP}$
CMOS Inverter VTC: Device Operation

- **P linear**
- **N cutoff**
- **P cutoff**
- **N linear**

![CMOS Inverter VTC Diagram](image)
CMOS Inverter VTC: Device Sizing

- Increase W of PMOS:
 - k_p increases
 - VTC moves to right

- Increase W of NMOS:
 - k_n increases
 - VTC moves to left

- For $V_M = V_{DD}/2$
 - $k_n = k_p$
 - $2W_n \approx W_p$
Effects of V_M adjustment

• Result from changing k_p/k_n ratio:
 – Inverter threshold $V_M \neq V_{DD}/2$
 – Rise and fall delays unequal
 – Noise margins not equal

• Reasons for changing inverter threshold
 – Want a faster delay for one type of transition (rise/fall)
 – Remove noise from input signal: increase one noise margin at expense of the other
 – Interfacing other types of logic (with different swings)
CMOS Inverter: V_{IL} Calculation

• KCL (NMOS saturation, PMOS linear):

\[
\frac{k_n}{2} (V_{GS,n} - V_{T0,n})^2 = \frac{k_p}{2} \left[2 \left(V_{GS,p} - V_{T0,p} \right) V_{DS,p} - V_{DS,p}^2 \right]
\]

\[
\frac{k_n}{2} (V_{in} - V_{T0,n})^2 = \frac{k_p}{2} \left[2 \left(V_{in} - V_{DD} - V_{T0,p} \right) (V_{out} - V_{DD}) - (V_{out} - V_{DD})^2 \right]
\]

• Differentiate and set $dV_{\text{Out}}/dV_{\text{In}}$ to –1

\[
k_n (V_{in} - V_{T0,n}) = k_p \left[(V_{in} - V_{DD} - V_{T0,p}) \frac{dV_{\text{out}}}{dV_{\text{in}}} + (V_{out} - V_{DD}) - (V_{out} - V_{DD}) \frac{dV_{\text{out}}}{dV_{\text{in}}} \right]
\]

\[
k_n (V_{IL} - V_{T0,n}) = k_p \left(2V_{out} - V_{IL} + V_{T0,p} - V_{DD} \right)
\]

\[
V_{\text{IL}} = \frac{2V_{out} + V_{T0,p} - V_{DD} + k_R V_{T0,n}}{1 + k_R} \quad k_R = \frac{k_n}{k_p}
\]

• Solve simultaneously with KCL to find V_{IL}

Amirtharajah, EEC 116 Fall 2011
CMOS Inverter: V_{IH} Calculation

- **KCL:**
 \[
 \frac{k_n}{2} \left[2(V_{GS,n} - V_{T0,n})V_{DS,n} - V_{DS,n}^2 \right] = \frac{k_p}{2} \left(V_{GS,p} - V_{T0,p} \right)^2
 \]
 \[
 \frac{k_n}{2} \left[2(V_{in} - V_{T0,n})V_{out} - V_{out}^2 \right] = \frac{k_p}{2} \left(V_{in} - V_{DD} - V_{T0,p} \right)^2
 \]

- **Differentiate and set dV_{out}/dV_{in} to -1**
 \[
 k_n \left[(V_{in} - V_{T0,n}) \frac{dV_{out}}{dV_{in}} + V_{out} - V_{out} \frac{dV_{out}}{dV_{in}} \right] = k_p \left(V_{in} - V_{DD} - V_{T0,p} \right)
 \]
 \[
 k_n \left(2V_{out} - V_{IH} + V_{T0,p} \right) = k_p \left(V_{IH} - V_{DD} - V_{T0,p} \right)
 \]

$$V_{IH} = \frac{V_{DD} + V_{T0,p} + k_R \left(2V_{out} + V_{T0,n} \right)}{1 + k_R} \quad k_R = \frac{k_n}{k_p}$$

- **Solve simultaneously with KCL to find V_{IH}**
CMOS Inverter: V_M Calculation

- **KCL (NMOS & PMOS saturated):**

\[
\frac{k_n}{2} (V_{GS,n} - V_{T0,n})^2 = \frac{k_p}{2} (V_{GS,p} - V_{T0,p})^2
\]

\[
\frac{k_n}{2} (V_{in} - V_{T0,n})^2 = \frac{k_p}{2} (V_{in} - V_{DD} - V_{T0,p})^2
\]

- **Solve for $V_M = V_{in} = V_{out}$**

\[
V_M = V_{T0,n} + \sqrt{\frac{1}{k_R}} \left(V_{DD} + V_{T0,p} \right)
\]

\[
k_R = \frac{k_n}{k_p}
\]
CMOS Inverter: Achieving Ideal V_M

\[V_{TH} = \frac{V_{T0,n} + \sqrt{\frac{1}{k_R}}(V_{DD} + V_{T0,p})}{1 + \sqrt{\frac{1}{k_R}}} \]

\[k_R = \frac{k_n}{k_p} \]

- Ideally, $V_M = V_{DD}/2$

\[k_{R,ideal} = \left(\frac{V_{DD}/2 + V_{T0,p}}{V_{DD}/2 + V_{T0,n}} \right)^2 \]

- Assuming $V_{T0,n} = V_{T0,p}$, $k_{R,ideal} = 1$

\[\left(\frac{W}{L} \right)_p = \frac{\mu_n}{\mu_p} \approx 2.5 \]

\[\left(\frac{W}{L} \right)_n \]
CMOS Inverter: V_{IL} and V_{IH} for Ideal V_M

- Assuming $V_{T_{0,n}}= -V_{T_{0,p}}$, and $k_R = 1$,

\[
V_{IL} = \frac{1}{8}(3V_{DD} + 2|V_{T0}|)
\]

\[
V_{IH} = \frac{1}{8}(5V_{DD} - 2|V_{T0}|)
\]

\[
V_{IL} + V_{IH} = V_{DD}
\]

\[
NM_L = V_{IL} - V_{OL} = V_{IL}
\]

\[
NM_H = V_{OH} - V_{IH} = V_{DD} - V_{IH} = V_{IL}
\]
MOSFET Scaling Effects

• Rabaey Section 3.5 (Kang & Leblebici Section 3.5)
• Scaling provides enormous advantages
 – Scale linear dimension (channel length) by factor \(S > 1 \)
 – Better area density, yield, performance
• Two types of scaling
 – Constant field scaling (full scaling)
 • \(A' = A/S^2; L' = L/S; W' = W/S; I_D' = I_D/S; P' = P/S^2; \)
 \(V_{dd}' = V_{dd}/S \)
 • Power Density \(P'/A' \) stays the same
 – Constant voltage scaling
 • \(A' = A/S^2; L' = L/S; W' = W/S; I_D' = I_D*S; P' = P*S; \)
 \(V_{dd}' = V_{dd} \)
 • Power Density \(P'/A' = S^3*P \) (Reliability issue)

Change these two
This changed as well
Short Channel Effects

- As geometries are scaled down
 - V_T (effective) goes lower
 - Effective channel length decreases
 - Sub-threshold Ids occurs
 - Current goes from drain to source while $V_{gs} < V_t$
 - Tox is scaled which can cause reliability problems
 - Can’t handle large V_g without hot electron effects
 - Changes the V_t when carriers imbed themselves in the oxide
 - Interconnects scale
 - Electromigration and ESD become issues
MOSFET Capacitances

- Rabaey Section 3.3 (Kang & Leblebici Section 3.6)
- Oxide Capacitance
 - Gate to Source overlap
 - Gate to Drain overlap
 - Gate to Channel
- Junction Capacitance
 - Source to Bulk junction
 - Drain to Bulk junction
Oxide Capacitances: Overlap

- **Overlap capacitances**
 - Gate electrode overlaps source and drain regions
 - x_d is overlap length on each side of channel
 - $L_{eff} = L_{drawn} - 2x_d$ (effective channel length)
 - Overlap capacitance:
 \[C_{GSO} = C_{GDO} = C_{ox} W x_d \]
 Assume x_d equal on both sides
Total Oxide Capacitance

• Total capacitance consists of 2 components
 – Overlap capacitance
 – Channel capacitance

• Cutoff:
 – No channel connecting to source or drain
 – \(C_{GS} = C_{GD} = C_{ox} W x_d \)
 – \(C_{GB} = C_{ox} W L_{eff} \)
 – Total Gate Capacitance = \(C_G = C_{ox} W L \)
Oxide Capacitances: Channel

• **Linear mode**
 – Channel spans from source to drain
 – Channel Capacitance split equally between S and D

\[
C_{GS} = \frac{1}{2} C_{ox} W L_{eff} \quad C_{GD} = \frac{1}{2} C_{ox} W L_{eff} \quad C_{GB} = 0
\]

 – Total Gate capacitance \(C_G = C_{ox} W L \)

• **Saturation regime**
 – Channel is pinched off: Channel Capacitance --

\[
C_{GD} = W x_d C_{ox} \quad C_{GS} = \frac{2}{3} C_{ox} W L_{eff} + C_{OX} W x_d \quad C_{GB} = 0
\]

 – Total Gate capacitance:

\[
C_G = \frac{2}{3} C_{ox} W L_{eff} + 2x_d W C_{OX}
\]
Oxide Capacitances: Channel

\[
C_{g,\text{total}} \quad \text{(no overlap, } \quad x_d = 0)\n\]
Junction Capacitance

Reverse-biased P-N junctions!
Capacitance depends on reverse-bias voltage.
Junction Capacitance

For a P-N junction:

\[C_j = \frac{A}{2} \sqrt{\frac{2q\varepsilon}{V_0 - V} \frac{N_d N_a}{N_d + N_a}} \]

If \(V=0 \), cap/area =

\[C_{j0} = \sqrt{\frac{q\varepsilon_{Si}}{2V_0} \frac{N_d N_a}{N_d + N_a}} \]

General form:

\[C_j = \frac{AC_{j0}}{(1 - \frac{V}{V_0})^m} \]

\(m = \) grading coefficient (0.5 for abrupt junctions) (0.3 for graded junctions)
Junction Capacitance

• Junction with substrate
 – Bottom area = W * L_S (length of drain/source)
 – Total cap = C_j

• Junction with sidewalls
 – “Channel-stop implant”
 – Perimeter = 2L_S + W
 – Area = P * X_j
 – Total cap = C_{jsw}

• Total junction cap C = C_j + C_{jsw}
Junction Capacitance

• Voltage Equivalence Factor

 - Creates an average capacitance value for a voltage transition, defined as $\Delta Q/\Delta V$

 $$C_{eq} = \frac{-AC_{j0}V_0}{(V_2-V_1)(1-m)} \left(\left(1 - \frac{V_2}{V_0} \right)^{1-m} - \left(1 - \frac{V_1}{V_0} \right)^{1-m} \right) = AK_{eq} C_{j0}$$

 $$K_{eq} = \frac{-2\sqrt{V_0}}{(V_2-V_1)} \left(\sqrt{V_0-V_2} - \sqrt{V_0-V_1} \right)$$ (abrupt junction only)

 $$C_{db} = AK_{eq} C_{j0} + PX_j K_{eqsw} C_{jsw0}$$
Example: Junction Cap

• Consider the following NMOS device
 – Substrate doping: \(N_A = 10^{15} \text{ cm}^{-3} \)
 – Source/drain doping: \(N_D = 2 \times 10^{20} \text{ cm}^{-3} \)
 – Channel-stop doping: 10X substrate doping
 – Drain length \(L_D = 1\mu m \)
 – Transistor \(W = 10\mu m \)
 – Junction depth \(X_j = 0.5\mu m \), abrupt junction

• Find capacitance of drain-bulk junction when drain voltage = 3V
Next Time: AC Characteristics

• CMOS Inverters
 – AC Characteristics: Designing for speed