EEC 116 Lecture #3: CMOS Inverters MOS Scaling

Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Outline

- Review: Inverter Transfer Characteristics
- Lecture 3: Noise Margins, Rise & Fall Times, Inverter Delay
- CMOS Inverters: Rabaey 1.3.2, 5 (Kang & Leblebici, 5.1-5.3 and 6.1-6.2)

Review: Inverter Voltage Transfer Curve

Voltage transfer curve (VTC): plot of output voltage Vout vs. input voltage Vin

Review: Actual Inverter Output Levels

- V_{OH} and V_{OL} represent the "high" and "low" output voltages of the inverter
- V_{OH} = output voltage when Vin = '0' (<u>V</u> Output High)
- V_{OL} = output voltage when Vin = '1' (<u>V O</u>utput <u>L</u>ow)
- Ideally,

$$-V_{OH} = Vdd$$

 $-V_{OL} = 0 V$

In transfer function terms:

$$- V_{OL} = f(V_{OH})$$

$$-V_{OH} = f(V_{OL})$$

- f = inverter transfer function
- Difference (V_{OH}-V_{OL}) is the voltage swing of the gate
 - *Full-swing logic* swings from ground to Vdd
 - Other families with smaller swings

Review: Inverter Switching Threshold

Inverter switching threshold:

- Point where voltage transfer curve intersects line Vout=Vin
- Represents the point at which the inverter switches state
- Normally, $V_M \approx Vdd/2$
- Sometimes other thresholds desirable

VTC Mathematical Definitions

- V_{OH} is the output high level of an inverter $V_{OH} = VTC(V_{OL})$
- $\cdot\,V_{\text{OL}}$ is the output low level of an inverter

 $V_{OL} = VTC(V_{OH})$

 ${\boldsymbol{\cdot}}\,V_{M}$ is the switching threshold

 $V_{M} = V_{IN} = V_{OUT}$

• V_{IH} is the lowest input voltage for which the output will be \geq the input (worst case '1')

 $dVTC(V_{IH})/dV_{IH} = -1$

• V_{IL} is the highest input voltage for which the output will be \leq the input (worst case '0')

 $dVTC(V_{IL})/dV_{IL} = -1$

Noise Margin and Delay Definitions

• NM_L is the difference between the highest acceptable '0' and the lowest possible '0'

 $NM_L = V_{IL} - V_{OL}$

• NM_H is the difference between the lowest acceptable '1' and the highest possible '1'

 $NM_H = V_{OH} - V_{IH}$

- t_{PHL} is the propagation delay from the 50% point of the input to the output when the output goes from high to low
- t_{PLH} is the propagation delay from the 50% point of the input to the output when the output goes from low to high
- $\boldsymbol{\cdot} t_{P}$ is the average propagation delay
- t_R is the rise time (usually 10% to 90%)
- t_F is the fall time (usually 90% to 10%)

Amirtharajah, EEC 116 Fall 2011

CMOS Inverter

CMOS Inverter: VTC

- Output goes completely to Vdd and Gnd
- Sharp transition region

Amirtharajah, EEC 116 Fall 2011

CMOS Inverter Operation

- NMOS transistor:
 - Cutoff if V_{in} < V_{TN}
 - Linear if $V_{out} < V_{in} V_{TN}$
 - Saturated if $V_{out} > V_{in} V_{TN}$
- PMOS transistor

- Cutoff if $(V_{in}-V_{DD}) > V_{TP} \rightarrow V_{in} > V_{DD}+V_{TP}$
- Linear if (V_{out}-V_{DD})>V_{in}-V_{DD}-V_{TP} \rightarrow V_{out}>V_{in} V_{TP}
- Sat. if (V_{out}-V_{DD})<V_{in}-V_{DD}-V_{TP} \rightarrow V_{out} < V_{in}-V_{TP}

CMOS Inverter VTC: Device Operation

Amirtharajah, EEC 116 Fall 2011

- Result from changing k_p/k_n ratio:
 - Inverter threshold $V_M \neq V_{DD}/2$
 - Rise and fall delays unequal
 - Noise margins not equal

Reasons for changing inverter threshold

- Want a faster delay for one type of transition (rise/fall)
- Remove noise from input signal: increase one noise margin at expense of the other
- Interfacing other types of logic (with different swings)

CMOS Inverter: V_{IL} Calculation

• KCL (NMOS saturation, PMOS linear):

$$\frac{k_n}{2} (V_{GS,n} - V_{T0,n})^2 = \frac{k_p}{2} \left[2 (V_{GS,p} - V_{T0,p}) V_{DS,p} - V_{DS,p}^2 \right]$$
$$\frac{k_n}{2} (V_{in} - V_{T0,n})^2 = \frac{k_p}{2} \left[2 (V_{in} - V_{DD} - V_{T0,p}) (V_{out} - V_{DD}) - (V_{out} - V_{DD})^2 \right]$$

Differentiate and set dVout/dVin to –1

$$k_{n}(V_{in} - V_{T0,n}) = k_{p} \left[(V_{in} - V_{DD} - V_{T0,p}) \frac{dV_{out}}{dV_{in}} + (V_{out} - V_{DD}) - (V_{out} - V_{DD}) \frac{dV_{out}}{dV_{in}} \right]$$

$$k_n (V_{IL} - V_{T0,n}) = k_p (2V_{out} - V_{IL} + V_{T0,p} - V_{DD})$$

$$V_{IL} = \frac{2V_{out} + V_{T0,p} - V_{DD} + k_R V_{T0,n}}{1 + k_R} \quad k_R = \frac{k_n}{k_p}$$

• Solve simultaneously with KCL to find V_{IL}

Amirtharajah, EEC 116 Fall 2011

CMOS Inverter: V_{IH} Calculation

• KCL:
$$\frac{k_n}{2} \Big[2 (V_{GS,n} - V_{T0,n}) V_{DS,n} - V_{DS,n}^2 \Big] = \frac{k_p}{2} (V_{GS,p} - V_{T0,p})^2$$

 $\frac{k_n}{2} \Big[2 (V_{in} - V_{T0,n}) V_{out} - V_{out}^2 \Big] = \frac{k_p}{2} (V_{in} - V_{DD} - V_{T0,p})^2$

Differentiate and set dVout/dVin to –1

$$k_{n} \left[\left(V_{in} - V_{T0,n} \right) \frac{dV_{out}}{dV_{in}} + V_{out} - V_{out} \frac{dV_{out}}{dV_{in}} \right] = k_{p} \left(V_{in} - V_{DD} - V_{T0,p} \right)$$
$$k_{n} \left(2V_{out} - V_{IH} + V_{T0,p} \right) = k_{p} \left(V_{IH} - V_{DD} - V_{T0,p} \right)$$
$$V_{IH} = \frac{V_{DD} + V_{T0,p} + k_{R} \left(2V_{out} + V_{T0,n} \right)}{1 + k_{R}} \quad k_{R} = \frac{k_{n}}{k_{p}}$$

- Solve simultaneously with KCL to find $V_{\rm IH}$ Amirtharajah, EEC 116 Fall 2011

• KCL (NMOS & PMOS saturated):

$$\frac{k_n}{2} (V_{GS,n} - V_{T0,n})^2 = \frac{k_p}{2} (V_{GS,p} - V_{T0,p})^2$$
$$\frac{k_n}{2} (V_{in} - V_{T0,n})^2 = \frac{k_p}{2} (V_{in} - V_{DD} - V_{T0,p})^2$$

• Solve for
$$V_{M} = V_{in} = V_{out}$$

$$V_{T0,n} + \sqrt{\frac{1}{k_{R}}} (V_{DD} + V_{T0,p})$$

$$V_{M} = \frac{V_{T0,n} + \sqrt{\frac{1}{k_{R}}} (V_{DD} + V_{T0,p})}{1 + \sqrt{\frac{1}{k_{R}}}}$$

$$k_{R} = \frac{k_{n}}{k_{p}}$$

Amirtharajah, EEC 116 Fall 2011

CMOS Inverter: Achieving Ideal V_M

$$V_{TH} = \frac{V_{T0,n} + \sqrt{\frac{1}{k_R}} (V_{DD} + V_{T0,p})}{1 + \sqrt{\frac{1}{k_R}}} \qquad k_R = \frac{k_n}{k_p}$$

Ideally, $V_M = V_{DD}/2 \qquad k_{R,ideal} = \left(\frac{V_{DD}/2 + V_{T0,p}}{V_{DD}/2 + V_{T0,n}}\right)^2$

• Assuming
$$V_{T0,n} = V_{T0,p}$$
, $k_{R,ideal} = 1$
$$\frac{\left(\frac{W}{L}\right)_p}{\left(\frac{W}{L}\right)_n} = \frac{\mu_n}{\mu_p} \approx 2.5$$

Amirtharajah, EEC 116 Fall 2011

• Assuming $V_{T0,n}$ =- $V_{T0,p}$, and k_R = 1,

$$V_{IL} = \frac{1}{8} \left(3V_{DD} + 2|V_{T0}| \right)$$
$$V_{IH} = \frac{1}{8} \left(5V_{DD} - 2|V_{T0}| \right)$$

$$V_{IL} + V_{IH} = V_{DD}$$

$$NM_{L} = V_{IL} - V_{OL} = V_{IL}$$
$$NM_{H} = V_{OH} - V_{IH} = V_{DD} - V_{IH} = V_{IL}$$

MOSFET Scaling Effects

- Rabaey Section 3.5 (Kang & Leblebici Section 3.5)
- Scaling provides enormous advantages
 - Scale linear dimension (channel length) by factor S > 1
 - Better area density, yield, performance

Two types of scaling

- Constant field scaling (full scaling)

• Power Density P'/A' = stays the same $_{Change}$ these two

- Constant voltage scaling

- A' = A/S²; L' = L/S; W' = W/S; I_D' = I_D*S; P' = P*S; V_{dd}' = V_{dd}
- Power Density P'/A' = $S_{a}^{3*}P$ (Reliability issue)

Amirtharajah, EEC 116 Fall 2011

This changed as well

Short Channel Effects

- As geometries are scaled down
 - $-V_T$ (effective) goes lower
 - Effective channel length decreases
 - Sub-threshold Ids occurs
 - Current goes from drain to source while Vgs < Vt
 - Tox is scaled which can cause reliability problems
 - Can't handle large Vg without hot electron effects
 - Changes the Vt when carriers imbed themselves in the oxide
 - Interconnects scale
 - Electromigration and ESD become issues

MOSFET Capacitances

- Rabaey Section 3.3 (Kang & Leblebici Section 3.6)
- Oxide Capacitance
 - Gate to Source overlap
 - Gate to Drain overlap
 - Gate to Channel
- Junction Capacitance
 - Source to Bulk junction
 - Drain to Bulk junction

Oxide Capacitances: Overlap

- Overlap capacitances
 - Gate electrode overlaps source and drain regions
 - x_d is overlap length on each side of channel
 - $L_{eff} = L_{drawn} 2x_d$ (effective channel length)

- Overlap capacitance:

$$C_{GSO} = C_{GDO} = C_{ox}Wx_d$$
 Assume x_d equal on both sides
Amirtharajah, EEC 116 Fall 2011

Total Oxide Capacitance

- Total capacitance consists of 2 components
 - Overlap capacitance
 - Channel capacitance

- Cutoff:
 - No channel connecting to source or drain

$$-C_{GS} = C_{GD} = C_{ox}Wx_{d}$$

$$- C_{GB} = C_{ox}WL_{eff}$$

- Total Gate Capacitance = $C_G = C_{ox}WL$

Linear mode

- Channel spans from source to drain
- Channel Capacitance split equally between S and D

$$C_{GS} = \frac{1}{2} C_{ox} W L_{eff} C_{GD} = \frac{1}{2} C_{ox} W L_{eff} C_{GB} = 0$$

– Total Gate capacitance $C_G = C_{ox}WL$

Saturation regime

- Channel is pinched off: Channel Capacitance --

$$C_{GD} = Wx_d C_{ox} \quad C_{GS} = \frac{2}{3}C_{ox}WL_{eff} + C_{OX}Wx_d \quad C_{GB} = 0$$

- Total Gate capacitance:

$$C_G = 2/3 C_{ox}WL_{eff} + 2x_dWC_{OX}$$

Amirtharajah, EEC 116 Fall 2011

Oxide Capacitances: Channel

Junction Capacitance

Reverse-biased P-N junctions! Capacitance depends on reverse-bias voltage.

Junction Capacitance

For a P-N junction:

$$C_{j} = \frac{A}{2} \sqrt{\frac{2q\varepsilon}{V_{0} - V} \frac{N_{d}N_{a}}{N_{d} + N_{a}}}$$
If V=0, cap/area =

$$C_{j0} = \sqrt{\frac{q\varepsilon_{Si}}{2V_{0}} \frac{N_{d}N_{a}}{N_{d} + N_{a}}}$$
General form:

$$C_{j} = \frac{AC_{j0}}{(-V_{0})^{m}}$$

m = grading coefficient (0.5 for abrupt junctions) (0.3 for graded junctions)

- Junction with substrate
 - Bottom area = W * L_S (length of drain/source)
 - Total cap = C_i
- Junction with sidewalls
 - "Channel-stop implant"
 - Perimeter = 2L_S + W
 - Area = P * X_i
 - Total cap = C_{jsw}
- Total junction cap C = C_j + C_{jsw}

Junction Capacitance

- Voltage Equivalence Factor
 - Creates an average capacitance value for a voltage transition, defined as $\Delta Q/\Delta V$

$$C_{eq} = \frac{-AC_{j0}V_0}{(V_2 - V_1)(1 - m)} \left(\left(1 - \frac{V_2}{V_0}\right)^{1 - m} - \left(1 - \frac{V_1}{V_0}\right)^{1 - m} \right) = AK_{eq}C_{j0}$$

 $K_{eq} = \frac{-2\sqrt{V_0}}{(V_2 - V_1)} \left(\sqrt{V_0 - V_2} - \sqrt{V_0 - V_1} \right) \quad \text{(abrupt junction only)}$

$$C_{db} = AK_{eq}C_{j0} + PX_{j}K_{eqsw}C_{jsw0}$$

- Consider the following NMOS device
 - Substrate doping: $N_A = 10^{15} \text{ cm}^{-3}$
 - Source/drain doping: $N_D = 2 \times 10^{20} \text{ cm}^{-3}$
 - Channel-stop doping: 10X substrate doping
 - Drain length $L_D = 1$ um
 - Transistor W = 10um
 - Junction depth Xj = 0.5um, abrupt junction

 Find capacitance of drain-bulk junction when drain voltage = 3V

Next Time: AC Characteristics

- CMOS Inverters
 - AC Characteristics: Designing for speed