Outline

- Finish Lecture 1 Slides
- Switch Example
- MOSFET Structure
- MOSFET Regimes of Operation
- Scaling
- Parasitic Capacitances
3D Perspective

Source: Digital Integrated Circuits, 2nd ©
CMOS Process
A Modern CMOS Process

Dual-Well Trench-Isolated CMOS Process

Source: Digital Integrated Circuits, 2nd ©
nwell and pwell

- The “bodies” of the transistors
ndiffusion and pdiffusion

- Source and Drain for each transistor
Polysilicon

- Gate of transistors and for short-distance wiring

Source: Omar Sattari
Metal1

• First level of interconnect

Source: Omar Sattari
Metal2

- Second layer of interconnect
Building an Inverter: Starting with Well and Diffusion

- Place N-type and P-type diffusions
 - Convention is to place PMOS on top and NMOS on bottom

Source: Omar Sattari
Transistors

- poly crossing diffusion produces a transistor!
- Common gate here
- PMOS shown on top
- NMOS shown on bottom

Source: Omar Sattari
Metal1

- **metal1 laid down but not yet connected**

- **Use metal for Vdd and Gnd**

- **Labels added**
 - Extremely useful for testing
 - Documents design
 - Use “point” labels, not large area ones
 - Never use *global* labels that end in an “!”

Source: Omar Sattari
Metal1 Contacts

- Connections now made between metal1 and:
 - pdiff
 - ndiff
 - poly
 - nwell
 - pwell
- Each via/contact is a different layer

Source: Omar Sattari
Metal2

- Use metal2 for longer distance routing
- Routes over the “top” of other circuits shown
- metal2 contacts connect metal1 and metal2 only

Source: Omar Sattari
Design Rules

• Interface between designer and process (CMOS fabrication) engineer

• Guidelines for constructing fabrication masks

• Units commonly used
 – Scalable design rules: lambda (\(\lambda\)) parameter (used in magic), or
 – Absolute dimensions (micron rules)

• Common rule examples:
 – Minimum width
 – Minimum separation same material
 – Minimum separation different material

• Look for flashing markers in Cadence that show errors
Design Rules

• Mead and Conway, 1980
 – “Lambda-based” scalable design rules
 – Allows full-custom designs to be easily reused from technology generation to technology generation
 – Lambda is roughly one half the minimum feature size
 • “1.0 µm technology” -> 1.0 µm min. length, lambda = 0.5 µm
 • “0.5 µm technology” -> 0.5 µm min. length, lambda = 0.25 µm
 – For our class, we are using a 0.18 µm technology so lambda is 0.09 µm

• See lab handouts for URL to our scalable design rules on the MOSIS website

• We are using “SCMOS_DEEP” rules
Example Intra-Layer Design Rules

- **Well**: Same Potential (0 or 6) and Different Potential (9)
- **Active**: 3
- **Select**: 2
- **Polysilicon**: 2
- **Contact or Via Hole**: 2
- **Metal1**: 3
- **Metal2**: 4

Source: Digital Integrated Circuits, 2nd ©
Example Design Rules: Transistor Layout

Source: Digital Integrated Circuits, 2nd ©
Example Design Rules: Vias and Contacts

Source: Digital Integrated Circuits, 2nd ©
Design Rule Checker

In magic, white dots appear at the point of a DRC rule violation. Something similar occurs in Cadence.

Place a box around white dots and press “y” to see what is causing an error.

Source: Digital Integrated Circuits, 2nd ©
Accounting for VDSM Effects

- **VDSM = Very Deep Sub Micron**
 - Effects significant below 0.25 μm (0.18 μm, 130 nm, 90 nm, 65 nm, 45 nm)

- **Compensation made at the mask level**
 - OPC – Optical Proximity Correction
 - Occurs when different mask layers don’t align properly
 - Test structures are used to characterize the process
 - Ability to adapt depends on the consistency of the error from process run to process run
Accounting for VDSM Effects: OPC

WITHOUT OPC

WITH OPC

Dense CD0 Window

Iso CD1 Window

Dense CD0 Window

Iso CD0 Window

Dense CD1 Window

Iso CD1 Window

Dense CD1 Window

Iso CD0 Window

Common Dense/Iso CD0 Window

Common Dense/Iso CD1 Window

Common Dense/Iso CD0 Window

Common Dense/Iso CD1 Window

NO Common Dense/Iso CD0 Window!!!
Accounting for VDSM Effects: Example

- Example of 2D OPC effects: rounded edges, narrowed lines

Uncorrected

Corrected
Compensating for VDSM Effects: Masks
Compensating for VDSM Effects: CAD

- Flow to compensate is transparent to layout designer
- Layout design proceeds as normal

Mentor Graphics Flow

References

• “Design of VLSI Systems”. A web based course located at: http://turquoise.wpi.edu/webcourse/

• Mark Anders and Jim Schantz of Intel Corporation

• Jan Rabaey, Lecture notes from his book “Digital Integrated Circuits, A Design Perspective”
MOS Transistor Types

- Rabaey Ch. 3 (Kang & Leblebici Ch. 3)
- Two transistor types (analogous to bipolar NPN, PNP)
 - NMOS: p-type substrate, n\(^+\) source/drain, electrons are charge carriers
 - PMOS: n-type substrate, p\(^+\) source/drain, holes are charge carriers
MOS Transistor Symbols

NMOS

PMOS

Amirtharajah, EEC 116 Fall 2011
Note on MOS Transistor Symbols

• All symbols appear in literature
 – Symbols with arrows are conventional in analog papers
 – PMOS with a bubble on the gate is conventional in digital circuits papers

• Sometimes bulk terminal is ignored – implicitly connected to supply:

• Unlike physical bipolar devices, source and drain are usually symmetric
MOS Transistor Structure

- Important transistor physical characteristics
 - Channel length $L = L_D - 2x_d$ (K&L $L = L_{gate} - 2L_D$)
 - Channel width W
 - Thickness of oxide t_{ox}
NMOS Transistor I-V Characteristics I

- I-V curve vaguely resembles bipolar transistor curves
 - Quantitatively very different
 - Turn-on voltage called **Threshold Voltage** V_T
Drain current varies quadratically with gate-source voltage V_{GS} (in Saturation)

$\begin{align*}
I_{DS} &= K (V_{GS} - V_t)^2 \\
V_t &
\end{align*}$
MOS Transistor Operation: Cutoff

- **Simple case: \(V_D = V_S = V_B = 0 \)**
 - Operates as MOS capacitor (\(C_g = \text{gate to channel} \))
 - Transistor in cutoff region

- **When \(V_{GS} < V_{T0} \), depletion region forms**
 - No carriers in channel to connect S and D (Cutoff)

![Diagram showing MOS transistor in cutoff mode with labels for gate, source, drain, substrate, and depletion region.](image-url)
MOS Transistor Operation: Inversion

- When $V_{GS} > V_{T0}$, inversion layer forms

- Source and drain connected by conducting n-type layer (for NMOS)
 - Conducting p-type layer in PMOS
Threshold Voltage Components

- Four physical components of the threshold voltage

1. Work function difference between gate and channel (depends on metal or polysilicon gate): Φ_{GC}

2. Gate voltage to invert surface potential: $-2\Phi_F$

3. Gate voltage to offset depletion region charge: Q_B/C_{ox}

4. Gate voltage to offset fixed charges in the gate oxide and oxide-channel interface: Q_{ox}/C_{ox}

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} : \text{gate oxide capacitance per unit area}$$
Threshold Voltage Summary

• If $V_{SB} = 0$ (no substrate bias):

$$V_{T0} = \Phi_{GC} - 2\phi_F - \frac{Q_{B0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}} \quad (K&L \ 3.20)$$

• If $V_{SB} \neq 0$ (non-zero substrate bias)

$$V_T = V_{T0} + \gamma \left(\sqrt{-2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right) \quad (3.19)$$

• Body effect (substrate-bias) coefficient:

$$\gamma = \sqrt{2qN_A\varepsilon_{Si}} \frac{C_{ox}}{C_{ox}} \quad (K&L \ 3.24)$$

• Threshold voltage increases as V_{SB} increases!
Threshold Voltage (NMOS vs. PMOS)

<table>
<thead>
<tr>
<th></th>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Fermi potential</td>
<td>$\phi_F < 0$</td>
<td>$\phi_F > 0$</td>
</tr>
<tr>
<td>Depletion charge density</td>
<td>$Q_B < 0$</td>
<td>$Q_B > 0$</td>
</tr>
<tr>
<td>Substrate bias coefficient</td>
<td>$\gamma > 0$</td>
<td>$\gamma < 0$</td>
</tr>
<tr>
<td>Substrate bias voltage</td>
<td>$V_{SB} > 0$</td>
<td>$V_{SB} < 0$</td>
</tr>
</tbody>
</table>
Body Effect

- **Body effect**: Source-bulk voltage V_{SB} affects threshold voltage of transistor
 - Body normally connected to ground for NMOS, V_{dd} (V_{cc}) for PMOS
 - Raising source voltage increases V_T of transistor
 - Implications on circuit design: series stacks of devices

![Diagram of transistor with body effect](image)

If $V_x > 0$, $V_{SB}(A) > 0$, $V_T(A) > V_{TO}$
MOS Transistor Regions of Operation

• Three main regions of operation

• **Cutoff**: \(V_{GS} < V_T \)
 No inversion layer formed, drain and source are isolated by depleted channel. \(I_{DS} \approx 0 \)

• **Linear (Triode, Ohmic)**: \(V_{GS} > V_T, \ V_{DS} < V_{GS} - V_T \)
 Inversion layer connects drain and source. Current is almost linear with \(V_{DS} \) (like a resistor)

• **Saturation**: \(V_{GS} > V_T, \ V_{DS} \geq V_{GS} - V_T \)
 Channel is “pinched-off”. Current saturates (becomes independent of \(V_{DS} \), to first order).
MOSFET Drain Current Overview

Saturation: \[I_D = \frac{\mu C_{ox} W}{2L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \]

Linear (Triode, Ohmic):
\[I_D = \mu C_{ox} \frac{W}{L} \left((V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right) \]

Cutoff: \[I_D \approx 0 \]

“Classical” MOSFET model, will discuss deep submicron modifications as necessary (Rabaey, Eqs. 3.25, 3.29)
Cutoff Region

- For NMOS: $V_{GS} < V_{TN}$
- For PMOS: $V_{GS} > V_{TP}$
- Depletion region – no inversion
- Current between drain and source is 0
 - Actually there is always some leakage (subthreshold) current
Linear Region

- When $V_{GS} > V_T$, an inversion layer forms between drain and source.
- Current I_{DS} flows from drain to source (electrons travel from source to drain).
- Depth of channel depends on V between gate and channel:
 - Drain end narrower due to larger drain voltage.
 - Drain end depth reduces as V_{DS} is increased.

![Diagram of MOSFET in linear region]
Linear Region I/V Equation Derivation

- **Gradual Channel Approximation:**
 - Assume dominant electric field in y-direction
 - Current is constant along channel

- **Integrate differential voltage drop** \(dV_c = I_D dR \) along y
Linear Region I/V Equation

- Valid for continuous channel from Source to Drain

\[
I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]
\]

Device transconductance: \(k_n = \mu_n C_{ox} \frac{W}{L} \)

Process transconductance: \(k'_n = \mu_n C_{ox} \)

\[
I_D = k'_n \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]
\]
Saturation Region

- **When** $V_{DS} = V_{GS} - V_T$:
 - No longer voltage drop of V_T from gate to substrate at drain
 - Channel is “pinched off”

- **If** V_{DS} **is further increased, no increase in current** I_{DS}
 - As V_{DS} increased, pinch-off point moves closer to source
 - Channel between that point and drain is depleted
 - High electric field in depleted region accelerates electrons towards drain
Saturation I/V Equation

• As drain voltage increases, channel remains pinched off
 – Channel voltage remains constant
 – Current saturates (no increase with increasing V_{DS})

• To get saturation current, use linear equation with $V_{DS} = V_{GS} - V_T$

\[
I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TN})^2
\]
MOS I/V Characteristics

- I/V curve for ideal MOS device
- $V_{GS3} > V_{GS2} > V_{GS1}$
Channel Length Modulation

- In saturation, pinch-off point moves
 - As V_{DS} is increased, pinch-off point moves closer to source
 - Effective channel length becomes shorter
 - Current increases due to shorter channel

\[
L' = L - \Delta L
\]

\[
I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{TN}\right)^2 \left(1 + \lambda V_{DS}\right)
\]

λ = channel length modulation coefficient
MOS I/V Curve Summary

I/V curve for non-ideal NMOS device:

\[V_{DS} = V_{GS} - V_T \]

Linear

Saturation

\(V_{GS1} \)

\(V_{GS2} \)

\(V_{GS3} \)

with channel-length modulation

without channel-length modulation \((\lambda=0)\)
MOS I/V Equations Summary

Cutoff

\[V_{GS} < V_{TN} \Rightarrow I_D = 0 \]
\[V_{GS} > V_{TP} \]

Linear

\[V_{GS} \geq V_{TN}, \quad V_{DS} < V_{GS} - V_{TN} \Rightarrow I_D = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right] \]
\[V_{GS} \leq V_{TP}, \quad V_{DS} > V_{GS} - V_{TP} \]

Saturation

\[V_{GS} \geq V_{TN}, \quad V_{DS} \geq V_{GS} - V_{TN} \Rightarrow I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \]
\[V_{GS} \leq V_{TP}, \quad V_{DS} \leq V_{GS} - V_{TP} \]

Note: if \(V_{SB} \neq 0 \), need to recalculate \(V_T \) from \(V_{T0} \)
A Fourth Region: Subthreshold

Subthreshold: \[I_D = I_S e^{\frac{V_{GS}}{n kT/q}} \left(1 - e^{-\frac{V_{DS}}{kT/q}} \right) \]

- Sometimes called “weak inversion” region
- When \(V_{GS} \) near \(V_T \), drain current has an exponential dependence on gate to source voltage
 - Similar to a bipolar device
- Not typically used in digital circuits
 - Sometimes used in very low power digital applications
 - Often used in low power analog circuits, e.g. quartz watches
Inverter Operation

- Inverter is simplest digital logic gate (1 input, 1 output)

 ![Inverter Circuit Diagram]

 - ‘0’ ——> ‘1’
 - ‘1’ ——> ‘0’

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Many different circuit styles possible
 - Resistive-load
 - NMOS and Pseudo-NMOS
 - CMOS

- Important static and dynamic characteristics
 - Speed (delay through the gate)
 - Power consumption
 - Robustness (tolerance to noise)
 - Area and process cost
Inverter Model: Voltage Transfer Curve

Voltage transfer curve (VTC): plot of output voltage V_{out} vs. input voltage V_{in}

Ideal digital inverter:
- When $V_{in}=0$, $V_{out}=V_{dd}$
- When $V_{in}=V_{dd}$, $V_{out}=0$
- Infinitely sharp transition region at inverter switching threshold
Actual Inverter: V_{OH} and V_{OL}

- V_{OH} and V_{OL} represent the “high” and “low” output voltages of the inverter.
- $V_{OH} = \text{output voltage when } V_{in} = '0' (V_{\text{Output High}})$
- $V_{OL} = \text{output voltage when } V_{in} = '1' (V_{\text{Output Low}})$
- Ideally,
 - $V_{OH} = V_{dd}$
 - $V_{OL} = 0 \text{ V}$
VOL and VOH

- In transfer function terms:
 - \(V_{OL} = f(V_{OH}) \)
 - \(V_{OH} = f(V_{OL}) \)
 - \(f \) = inverter transfer function

- Difference \((V_{OH} - V_{OL})\) is the voltage swing of the gate
 - Full-swing logic swings from ground to \(V_{dd} \)
 - Other families with smaller swings
Inverter Switching Threshold

Inverter switching threshold:

- Point where voltage transfer curve intersects line $V_{out}=V_{in}$
- Represents the point at which the inverter switches state
- Normally, $V_M \approx V_{dd}/2$
- Sometimes other thresholds desirable

$$(K&L \quad V_{TH} = V_M)$$
Noise Margins

- V_{IL} and V_{IH} measure the effect of input voltage on inverter output.
- V_{IL} = largest input voltage recognized as logic ‘0’
- V_{IH} = smallest input voltage recognized as logic ‘1’
- Defined as point on VTC where slope = -1
Noise Margins and Robustness

- Noise margin is a measure of the robustness of an inverter
 - \(N_{ML} = V_{IL} - V_{OL} \)
 - \(N_{MH} = V_{OH} - V_{IH} \)

- Models a chain of inverters. Example:
 - First inverter output is \(V_{OH} \)
 - Second inverter recognizes input \(> V_{IH} \) as logic ‘1’
 - Difference \(V_{OH} - V_{IH} \) is “safety zone” for noise

Ideally, noise margin should be as large as possible

“1”
\(V_{OH} \)
\(N_{MH} \)
\(V_{IH} \)

“0”
\(V_{OL} \)
\(N_{ML} \)
\(V_{IL} \)
Noise Margin Motivation

- Why are V_{IL}, V_{IH} defined as unity-gain point on VTC curve?
 - Assume there is noise on input voltage V_{in}
 \[V_{out} = f(V_{in} + V_{noise}) \]
 - First-order Taylor series approximation:
 \[V_{out} = f(V_{in}) + \frac{dV_{out}}{dV_{in}} V_{noise} \]
 - If gain $(dV_{out}/dV_{in}) > 1$, noise will be amplified.
 - If gain < 1, noise is filtered. Therefore V_{IL}, V_{IH} define regions where gain < 1
Inverter Time Response

- Propagation delay measured from 50% point of Vin to 50% point of Vout

 $t_{phl} = t_1 - t_0, \quad t_{plh} = t_3 - t_2, \quad t_p = \frac{1}{2}(t_{phl} + t_{plh})$
Rise and Fall Time

- **Fall time**: measured from 90% point to 10% point
 - \(t_F = t_1 - t_0 \)
- **Rise time**: measured from 10% point to 90% point
 - \(t_R = t_3 - t_2 \)
- **Alternately**, can define 20%-80% rise/fall time
Ring Oscillator

- **Ring oscillator circuit**: standard method of comparing delay from one process to another
- Odd-number n of inverters connected in chain: oscillates with period T (usually \(n >> 5\))

\[
T = t_{plh1} + t_{phl1} + t_{plh2} + t_{phl2} + t_{plh3} + t_{phl3} + \cdots
\]

\[
T = 2nt_p,
\]

\[
f = \frac{1}{T} = \frac{1}{2nt_p},
\]

\[
t_p = \frac{1}{2nf}
\]
Inverter as Amplifier

- For V_{in} between V_{IL} and V_{IH}, inverter gain > 1
- Acts as a linear amplifier (often very high gain)
- Logic levels ‘0’ and ‘1’ correspond to saturating amplifier output (output is pegged to high or low supply)
- Resistive load inverter same circuit as common source amplifier
Next Topic: Inverters

• Inverter Characteristics
 – Transfer functions, noise margins, resistive and nonlinear loads

• CMOS Inverters

• MOSFET Scaling

• MOSFET Capacitances