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Announcements

• Lab 5 due Wednesday, Nov. 23

• Homework 5 due Monday, Nov. 28

• Lab 6 due Friday, Dec. 2
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Outline

• Review and Finish: Memories

• Implementation Strategies: Rabaey Ch. 1, 8 (Kang 
& Leblebici, Ch. 1)
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Abstraction of Design Complexity

• Design complexity
– Typically tens of transistors in analog circuits

• Each is normally hand crafted along with placement and 
wiring

– Hundreds of transistors
• Each can be hand crafted

– Thousands to 100s of thousands of transistors
• Must find regularity in structure and exploit it (re-use cells)
• Ex: memory

– Millions to billions of transistors
• Must find high-level regularity in structure and exploit it (re-

use modules and subsystems)
• Ex: System on Chip (SOC)
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Design Abstraction Levels
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Abstraction of Design Complexity

• Levels

– Device

– Circuit

– Gate

– Module or functional unit (e.g., adder, memory, etc.)

– Sub-system (e.g., processor, display driver, network 
interface, etc.)

• Methods to abstract complexity

– Sophisticated Computer-Aided-Design (CAD) tools

– Standard cell libraries
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Hierarchical Abstraction

• Example: While designing at the gate level, we do 
not consider what is inside each gate
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Why Learn About Circuits and Layout Then?

• Best designers can:

– Build model abstractions

– Understand limitations of models
• Wire or interconnect performance
• Changes with technology scaling

• Abstractions limit maximum attainable 
performance and energy-efficiency

– Multi-disciplinary view needed

• Troubleshooting and debugging
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Design Aspects that “Defy Hierarchy”

• Clock distribution

– Timing skew

• Power distribution

– Sufficient current handling

– Adequate noise suppression
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Full Custom

• All transistors and 
interconnect drawn 
by hand

• Full control over 
sizing and layout

• Highest area density 
and higher 
performance

• Longest time to 
design “maturity”

[figure from S. Hauck]
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Full Custom Design Example

• Multiplier Chip
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Standard Cell

• Constant-
height cells

• Regular “pin”
locations

• Cells 
represent 
gates, 
latches, flip-
flops

• Placed and 
routed by 
software

[figure from S. Hauck]
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Standard Cell

• Channels for routing only in older technologies 
(not necessary with modern processes with many 
levels of interconnect)

[figure from S. Hauck]
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Standard Cell — Example

[Brodersen92]

• Application-
Specific 
Integrated 
Circuit (ASIC)

• Hardwired 
combination 
of standard 
cells 
implements a 
fixed logic 
function or 
FSM (e.g., 
video codec)
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Combination Standard Cell and Full Custom

[figure from S. Hauck]
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“Soft” MacroModules

Synopsys DesignCompiler
Source: Digital Integrated Circuits, 2nd ©
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Gate Array

• Polysilicon and 
diffusion are the 
same for all designs

• Metal layers 
customized for 
particular chips

n‐type diffusion

polysilicon

p‐type diffusion

PMOS 
transistor

NMOS 
transistor
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Unprogrammed Gate Array

Isolation 
Provided 

by 
Spacing
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Programmed Gate Array

• Metal connections 
made to create 
particular function

• What logic gate is 
this?
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Gate Array — Sea-of-Gates

rows of

cells

routing 
channel

uncommitted

VD D

GND
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metal

possible
contact
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Out

Uncommited Cell

Committed Cell (4-input NOR)

Source: Digital Integrated Circuits, 2nd ©
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Unprogrammed Sea-of-Gates Array
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Programmed Sea-of-Gates Array

Isolation 
Provided 
by Cutoff 

Bias
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Gate Array

• Polysilicon and diffusion 
the same for all designs

• 0.125 um example

[figure from LETI]
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Field Programmable Gate Array (FPGA)

• Metal layers now 
programmable with 
SRAM instead of 
hardwired during 
manufacture as with a 
gate array 

• Cells contain general 
programmable logic and 
registers

[figure from S. Hauck]
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Field Programmable Gate Array (FPGA)

• Chips can now be “designed” with software

• User pays for up-front chip design costs

– All costs: full-custom, standard cell

– Half: gate array

– Shared: FPGA

• User writes code (e.g., Verilog), compiles it, and 
downloads into the chip

– Can be used to prototype standard cell (ASIC) 
design
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Heterogeneous Programmable Platforms

Xilinx Vertex-II Pro

Courtesy Xilinx

High-speed I/O

Embedded PowerPC Embedded memories

Hardwired 
multipliers

FPGA Fabric
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Design at a Crossroad: System-on-a-Chip

RAM

500 k Gates FPGA
+ 1 Gbit DRAM
Preprocessing

Multi-
Spectral
Imager

μC
system
+2 Gbit
DRAM
Recog-
nition

A
na

lo
g

64 SIMD Processor
Array + SRAM

Image Conditioning
100 GOPS

• Often used in 
embedded applications 
where cost,
performance, and 
energy are big issues!

• DSP and control

• Mixed-mode

• Combines 
programmable and 
application-specific 
modules

• Software plays crucial 
role
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A SoC Example: High Definition TV Chip

Courtesy: Philips
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Standard Cell Based IC vs. Custom Design IC

• Standard cell based IC: 
– Design using standard cells 

– Standard cells come from library provider

– Many EDA tools to automate this flow

– Shorter design time

• Custom designed IC: 
– Designed by individual engineers using manual 

process

– Higher performance
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• Front end
– System specification and architecture

– HDL coding & behavioral simulation

– Synthesis & gate level simulation

• Back end
– Placement and routing

– DRC, LVS

– Dynamic simulation and static analysis

Standard Cell Based VLSI Design Flow
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Asynchronous Array of Simple Processors

• AsAP Project by Prof. Baas’ VLSI Computation 
Lab

• A processing chip containing multiple uniform 
simple processor elements

• Each processor has its local clock generator

• Each processor can communicate with its 
neighbor processors using dual-clock first-in 
first-out buffers (FIFOs)
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Diagram of a 3x3 AsAP

More information:  http://www.ece.ucdavis.edu/vcl/asap/ 



Amirtharajah, EEC 116 Fall 2011 33

Simple Diagram of Front-End Design Flow

System 
Specification

RTL 
Coding Synthesis

Gate Level 
(Structural) 

Code

INV (.in (a),      .out (a_inv));
AND (.in1 (a_inv), .in2 (b),. out (c));Ex: c = !a & b
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Simple Diagram of Back-End Design Flow

Gate level 
Verilog 
from synthesis

Place 
&

Route

Final layout

(sent for 
fabrication)

DRC

Gate level Verilog LVS

Timing information

Gate level dynamic and/or static analysis

Design rule
check

Layout vs.
Schematic 
check
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Back-end Design of AsAP

• Technology: CMOS 0.18 um

• Standard cell library: Artisan

• Tools

– Placement & Route: Cadence Encounter

– Final layout edit: icfb

– DRC & LVS: Calibre

– Static timing analysis: Primetime
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Flow of Placement and Routing

• Import needed files

• Floorplan

• Placement & in-place optimization

• Clock tree generation

• Routing
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Import Needed Files

• Gate level verilog (.v) 

• Geometry information (.lef)

• Timing information (.lib)

INV (.in (a),      .out (a_inv));
AND (.in1 (a_inv),   .in2 (b),  .out (c));

INV: 1um width  AND: 2 um width

INV: 1ns delay;  AND: 2 ns delay

INV AND
a

b

C

Delay (a->c): 1ns + 2ns = 3ns



Amirtharajah, EEC 116 Fall 2011 38

Floorplan

• Size of chip

• Location of pins

• Location of main blocks

• Power supply: deliver enough power for each 
gate

Power Supply (1.8V)
Current

Gate 1 Gate 2 Gate 3 Gate 4

1.75V 1.7V

1.65V (need 
another 
power line)

Voltage drop equation: V2 = V1 – I * R
VSS

VDD (Metal)
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Single Processor Floorplan
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Placement and In-Placement Optimization

• Placement: place the gates on floorplan

• In-placement optimization

– Why: timing information difference between 
synthesis and layout (wire delay)

– How: change gate size, insert buffers

– Should not change the circuit function!!
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Single Processor: Gate Placement
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Clock Tree

• Main parameters: skew, delay, transition time



Amirtharajah, EEC 116 Fall 2011 43

Single Processor Clock Tree
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Routing

• Connect the gates using wires

• Two steps

– Connect the global signals (power)

– Connect other signals
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Single Processor Layout

Area: 
0.8mm x 0.8mm

Estimated clock 
frequency:
450 MHz
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First Generation 6x6 AsAP Layout

Single 
Processor

Area: 30mm2

36 processors
114 I/O pads
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Verification After Layout

• DRC (Design Rule Check)
• LVS (Layout vs. Schematic)

– GDS vs. (Verilog + Spectre/Spice module)

• Gate level Verilog dynamic simulation
– Mainly check the function 

– Different with synthesis result: clock, OPT

• Gate level static analysis
– Check all the paths
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Useful Design and Simulation Tools
• Dynamic HDL Simulation

– Modelsim (Mentor), NC-verilog (Cadence), Active-
HDL

• Dynamic Analog Simulation
– Spectre (Cadence), Hspice (Synopsys)

• Synthesis
– RTL Compiler (Cadence)
– Design-Compiler, Design-Analyzer (Synopsys)

• Placement & Routing
– Encounter & Virtuoso (Cadence)
– Astro (Synopsys)
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Useful Verification Tools

• DRC & LVS
– Calibre (Mentor)
– Diva (Cadence – used in EEC 116/119AB)
– Dracula (Cadence)

• Static Analysis
– Primetime (Synsopsys)
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Next Topics: Low Power and DFM

• Low power design principles and circuit techniques

– Voltage scaling, activity factor reduction, clock gating, 
leakage reduction

• Design for Manufacturability

– Parameter variations in CMOS digital circuits

– Yield maximization and worst-case design
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