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Permissions to Use Conditions & Acknowledgment

• Permission is granted to copy and distribute this slide 
set for educational purposes only, provided that the 
complete bibliographic citation and following credit line 
is included: "Copyright 2002 J. Rabaey et al." 
Permission is granted to alter and distribute this 
material provided that the following credit line is 
included: "Adapted from (complete bibliographic 
citation). Copyright 2002 J. Rabaey et al."
This material may not be copied or distributed for 
commercial purposes without express written 
permission of the copyright holders. 

• Slides 13-17 Adapted from CSE477 VLSI Digital Circuits 
Lecture Slides by Vijay Narayanan and Mary Jane Irwin, 
Penn State University



Amirtharajah, EEC 116 Fall 2011 3

Outline

• Administrative Details

• Survey of Digital IC Technology

• MOS Fabrication

• Layout Overview

• MOSFET Overview
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Personnel

• Prof. Raj Amirtharajah (Instructor)
Office: 3173 Kemper Hall
Email: ramirtha@ece.ucdavis.edu
Please put EEC 116 in email subject line.
Office Hours: F 2 - 3 PM or by appointment.

• Stanley Hsu
Email: swhsu@ucdavis.edu
Office Hours: Tu 2-4 2107 Kemper

• Labs
Wednesdays 6 PM – 9 PM 2107 Kemper
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Course Materials

• Textbook
Digital Integrated Circuits (2nd ed.) 
by J. Rabaey, A. Chandrakasan, and B. Nikolic

• Suggested References
CMOS Digital Integrated Circuits (3rd ed.) Kang and Leblebici
CMOS VLSI Design (4th ed.) Weste, Harris (or earlier editions)

• Handouts
Labs, lab report cover sheets, slides, and lecture notes available 

on course web page in PDF format.
• Web Page

http://www.ece.ucdavis.edu/~ramirtha/EEC116/F11/F11.html
Linked from SmartSite
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Grading

• Letter

• A: 100 - 90%

• B: 90 - 80%
• C: 80 - 70%
• D: 70 - 60%
• F: below 60%

• Expect class average to be around B- / C+
• Curving will only help you
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Weighting

• Labs 35%
• Weekly Homework 5%

Scale for each problem: 0 = poor effort, 1 = close, but 
fundamental problem, 2 = correct

• Quizzes 10%
Four throughout the quarter (approx. every other week), 

lowest score dropped (April 11, April 25, May 18, May 25)
• Midterm 20%

Monday, October 31, in class
• Final 30%

Wednesday, December 7, 1:00 - 3:00 PM
Cumulative, but emphasizes material after midterm
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Colored Pencils

• Buy colored pencils or pens whose colors match 
Cadence layout tool layer colors

– green

– brown (orange next closest?)

– red

– blue

– purple

• Used for “stick diagrams”

• Slightly transparent pencils 
or pens work best
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Labs and CAD Software Usage

• Need to know/learn Cadence/Spectre – Circuit 
Simulation

• Can work on labs remotely using VNC, etc.
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Moore’s Law
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Advances in Memory Density

Source: Digital Integrated Circuits, 2nd ©
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Hybrid to Monolithic Trend

• We continue to integrate multiple functions on a 
single chip
– Mixture of Analog, Radio Frequency (RF), Digital

– Graphics/Motherboard chipset an example of this

• Cost and Performance driving market
– Higher performance achieved on chip than off chip

– Lower cost due to a single die versus multi-chip 
design

– Saves on packaging, total area by eliminating 
redundant functions

• System-on-a-Chip (SOC) concept
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Education Demand for Circuit Design
• Industry needs circuit designers

– Not just logic designers
• Must understand operation at transistor level

– Not just digital designers
• Must understand analog effects

– Not just analog designers
• Must be able to comprehend Deep Sub-Micron 

(DSM) effects (<0.13um)
• Fundamental circuit knowledge critical

– Similar techniques for bipolar transistors, NMOS (even 
relays and vacuum tubes!)

– Must be able to exploit nanoscale devices in future
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Education Demand for System Design
• Industry needs system designers

– Need to understand system implications of your 
design

• Power Delivery, Clock Loading – What do you need
– Need to design from the system point of view

• Communication protocol – how to effectively talk 
with other blocks

• What should be added into your block to meet 
system design requirements(i.e. comprehend soft 
block methodology for optimization of area, 
interconnect, etc.)

You must operate at both levels!
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Productivity Trends

Complexity outpaces design productivity

Courtesy, ITRS Roadmap
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What are the issues facing the industry ?
• Growth of transistors is exponential
• Growth of operating frequency is (was?) exponential

– Reaching a limit due to power dissipation (see current 
generation Pentiums and Itaniums)

• Complexity continues to grow
– Trend is toward multiple cores on one chip
– Design teams cannot keep up with trend

• Power dissipation a concern
– Power delivery, thermal issues, long term reliability

• Manufacturing providing us with lots of transistors
– How do we use them effectively (besides large caches)?
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Why worry about power? Power Dissipation
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Why worry about power? Chip Power Density
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Chip Power Density Distribution

• Power density is not uniformly distributed across the chip
• Silicon not the best thermal conductor (isotopically pure 

diamond is)
• Max junction temperature is determined by hot-spots

– Impact on packaging, cooling
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Recent Battery Scaling and Future Trends

• Battery energy density increasing 8% per year, demand 
increasing 24% per year (Economist,  January 6, 2005)

Battery
(40+ lbs)
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Why worry about power? Standby Power

Drain leakage will increase as VT decreases to maintain noise 
margins and meet frequency demands, leading to excessive 
battery draining standby power consumption.
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Year 2002 2005 2008 2011 2014
Power supply Vdd
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…and phones leaky!
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Industrial Plants and Power Line Monitoring
(courtesy ABB)

Operating Room of the Future
(courtesy John Guttag)

Target Tracking & Detection
(Courtesy of ARL) Location Awareness

(Courtesy of Mark Smith, HP)

Websign

NASA/JPL sensorwebs

Emerging Microsensor Applications
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Chip Design Styles
• Field-Programmable Gate Array (FPGA)

– Regular structure. Not all transistors are usable.
– Programmed via software (configurable wiring)

• Gate Array
– Regular structure. Higher usage of transistors than FPGA
– Two step manufacturing process. 

• Diffusion and poly initially. Design must be fairly stable
• Metal layers fabricated once design is finalized

• Cell based design
– All transistors used (may have spares to fill in area)
– Each cell is fixed height so that they can be placed in rows

• Full Custom
– Highest level of compactness and performance
– Manually intensive. Not conducive to revision (ECO)
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Logic Design Families
• Static CMOS Logic

– Good power delay product (energy)
– Good noise margin
– Not as fast as dynamic

• Dynamic Logic
– Very fast but inefficient in use of power
– Domino, CPL, OPL

• Pass Transistor Logic
– Poor noise margin
– Sometimes static power dissipation
– Less area than static CMOS
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Design Parameters

• Reliability (Dealt with when relating to layout)

– Factors that dictate reliable operation of the circuit
• Electromigration, thermal issues, hot electrons, 

noise margins

• Performance (Not dealt with in this class)

– Not just measured in clock speed. Power-Delay 
Product (PDP, equivalent to energy) is a better 
measure

• Area

– Directly affects cost
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Current State of the Art

• Intel Core® @ 4 GHz (1 or 2 cores/chip going to 4+)

– 800 - 1066 MHz system bus

– AGP 8x graphics (533 MHz bus)

– Memory bus at 533 MHz (DDR)

• Complex Designs demand resources

– Design teams resource limited due to logistics and cost

– Cannot afford to miss issues due to cost of product 
recall

– Emphasis on pre-silicon verification as opposed to post 
silicon testing
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How Large Are Transistors?

• If a human hair were 
this large…

A several-year-old 
transistor would be 
this long…

Source: Richard Spencer
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The First Transistor

• Fabricated at Bell Labs on 
December 16, 1947.  The 
inventors won the Nobel 
prize in physics in 1956 for 
the invention. 

Source: Richard Spencer
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The First Integrated Circuit

• This is the first IC made 
by Jack Kilby of Texas 
Instruments.  It was built 
in 1958. 

Source: Richard Spencer
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An Early “Planar” IC

• This is an early planar IC from 
Fairchild.

Source: Richard Spencer
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Intel 4004 Micro-Processor

1971
1000 transistors
1 MHz operation

Source: Digital Integrated Circuits, 2nd ©
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• Introduced in 
2000
– 42 million 

transistors

– 0.18 µm CMOS

Source: Intel
http://www.intel.com/museum/online/hist_micro/hof/ 

Intel Pentium 4 Microprocessor
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One
centimeter

Modern Microprocessor
(> 100,000,000 transistors)

2003
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Modern Multicore
Microprocessor

(790,000,000 transistors)
2007IBM POWER6

Reick et al., Hot Chips 19, 2007
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• Introduced in 2010
– 1.17 billion transistors, 32 nm CMOS

Source: Intel

Intel Westmere 6-Core Microprocessor
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Expectations
• You should already know

– Solid State – (i.e. PN junctions, semiconductor 
physics, ..)

• What we will cover
– MOS Transistors Fabrication and Equations
– CMOS logic at the transistor and physical level
– Sequential logic
– Memory
– Arithmetic Circuits
– Interconnect
– Design Styles

• Framework
– Course to use PowerPoint for the most part
– Bring PowerPoint slides to class and write notes on 

them
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• Rabaey Ch. 3 (Kang & Leblebici Ch. 3)
• Two transistor types (analogous to bipolar NPN, PNP)

– NMOS: p-type substrate, n+ source/drain, electrons are 
charge carriers

– PMOS: n-type substrate, p+ source/drain, holes are 
charge carriers 

MOS Transistor Types

source drain

P-substrate

N+ N+

NMOS

source drain

N-substrate

P+ P+

PMOS

gate gate

bulk (substrate)bulk (substrate)
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MOS Transistor Symbols
NMOS PMOSD
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• All symbols appear in literature

– Symbols with arrows are conventional in analog papers

– PMOS with a bubble on the gate is conventional in digital 
circuits papers

• Sometimes bulk terminal is ignored – implicitly 
connected to supply:

• Unlike physical bipolar devices, source and drain are 
usually symmetric

Note on MOS Transistor Symbols

NMOS PMOS
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MOS Transistor Structure

L

W
tox

xd

• Important transistor physical characteristics

– Channel length L = LD – 2xd (K&L L = Lgate – 2LD)

– Channel width W

– Thickness of oxide tox
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MOS Transistor Regions of Operation

• Three main regions of operation

• Cutoff: VGS < VT
No inversion layer formed, drain and source are 
isolated by depleted channel.  IDS ≈ 0

• Linear (Triode, Ohmic): VGS > VT, VDS < VGS-VT
Inversion layer connects drain and source.
Current is almost linear with VDS (like a resistor)

• Saturation: VGS > VT, VDS ≥ VGS-VT
Channel is “pinched-off”.  Current saturates 
(becomes independent of VDS, to first order).
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MOSFET Drain Current Overview

Linear (Triode, Ohmic):

“Classical” MOSFET model, will discuss deep submicron 
modifications as necessary (Rabaey, Eqs. 3.25, 3.29)
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Logic Gate Examples
• CMOS Inverter

• Two Input NAND

• Two Input NOR
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Fabrication Process
• Substrate is grown and then cut

– Round silicon wafers are used

– Purity emphasized to prevent impurities from 
affecting operation (99.9999% pure)

• Each layer deposited separately

• Some layers used as masks for later layers

• Planar process is important

– Requires minimum percent usage of metal to 
ensure flatness
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Silicon Substrate Manufacturing
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Silicon

• Silicon is the second 
most common element 
in the Earth’s crust.

• Semiconductor-grade 
Si is 99.999999 % pure.

• Ingots like this one 
weigh several hundred 
pounds and cost 
$16,000

• The ingot will be sliced 
into very thin wafers.

Source: Richard Spencer
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A Silicon Wafer
• This 8-inch wafer 

contains about 
200 Pentium II 
chips (1997).

• Each chip 
contains more 
than 20 million 
transistors.

• More than 1 
billion 
microprocessors 
are made each 
year.

Source: Richard Spencer
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A State-of-the-art Wafer

• 300 mm 
diameter 
wafer

Source: IBM
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Building a Golf Course with Similar Process

• Plane drops materials from the air
– Sand, then dirt, then grass seeds, then trees
– Certain masks applied during process to prevent material 

from hitting particular areas
– For instance: After Sand, mask placed over areas where 

sand trap will exist. Mask later taken off at end of process 
to reveal sand trap.



Amirtharajah, EEC 116 Fall 2011 51

Fabrication: Patterning of SiO2 Step I

• Grow SiO2 on Si by exposing to O2
– High temperature accelerates this process

• Cover surface with photoresist (PR)
– Sensitive to UV light (wavelength determines feature size)
– Positive PR becomes soluble after exposure
– Negative PR becomes insoluble after exposure
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Fabrication: Patterning of SiO2 Step II

• Exposed PR removed with a solvent

• SiO2 removed by etching (HF – hydrofluoric acid)

• Remaining PR removed with another solvent
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NMOS Transistor Fabrication

• Thick field oxide grown

• Field oxide etched to create area for transistor

• Gate oxide (high quality) grown
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NMOS Transistor Fabrication

• Polysilicon deposited (doped to reduce resistance R)
• Polysilicon etched to form gate
• Gate oxide etched from source and drain

– Self-aligned process because source/drain aligned by 
gate

• Si doped with donors to create n+ regions
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NMOS Transistor Fabrication

• Insulating SiO2 grown to cover surface/gate
• Source/Drain regions opened
• Aluminum evaporated to cover surface
• Aluminum etched to form metal1 interconnects
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Inverter Fabrication: Layout

• Inverter
– Logic symbol

– CMOS inverter circuit

– CMOS inverter layout (top view of lithographic 
masks)
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Inverter Fabrication: NWELL and Oxides

• N-wells created

• Thick field oxide grown surrounding active 
regions

• Thin gate oxide grown over active regions
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Inverter Fabrication: Polysilicon

• Polysilicon deposited

– Chemical vapor deposition (Places the Poly)

– Dry plasma etch (Removes unwanted Poly)
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Inverter Fabrication: Diffusions

• N+ and P+ regions created using two masks

– Source/Drain regions

– Self-aligned process since gate is already fabricated

– Substrate contacts
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Inverter Fabrication

• Insulating SiO2 deposited using chemical vapor 
deposition (CVD)

• Source/Drain/Substrate contacts exposed
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Inverter Fabrication

• Metal (Al, Cu) deposited using evaporation

• Metal patterned by etching

• Copper is current metal of choice due to low resistivity



Amirtharajah, EEC 116 Fall 2011 62

NWELL MOS Process

• MOS transistors use 
PN junctions to 
isolate different 
regions and prevent 
current flow.

• NWELL is used in P-
substrate so that 
PMOS transistors are 
isolated and don’t 
share currents. 
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More Complex Processes
• Twin Well CMOS Process

– Can help to avoid body effect
– Allows for Vt and channel transconductance tuning
– Requires extra processing steps (more costly)
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Silicon-On-Insulator (SOI) Process

• Both transistors built on insulating substrate

– Allows for tight compaction of design area

– Some of the parasitic capacitances seen in bulk CMOS 
disappear

– Wafer cost is high (IBM produces SOI, Intel doesn’t)
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Wires

• Four levels of wires 
shown here

• Designers specify 
each layer and 
connections 
between layers

Source: IBM
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• Modern chips have 
up to 8 layers of 
wires

Source: IBM

Chip Wires
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Memory Array

• Human hair on a 
256 Kbit 
memory chip

Source: Helmut Föll
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Memory Array

• Human hair on a 
4 Mbit memory 
chip

• Note DRAM 
trench 
capacitors

Source: Helmut Föll
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Memory Array

• Red blood cells on 
a 1 Mbit memory 
chip

Source: Helmut Föll
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Transistor Layout

• Drawing a transistor is this 
easy!

Source: Mike Lai

PMOS transistor

NMOS transistor

GATE

GATE

DRAIN

DRAIN SOURCE

SOURCE
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AND Gate Layout

• Here is an AND 
gate (with an 
inverted output, 
which is called a 
NAND)

Source: Mike Lai

OUTPUT

POWER SUPPLY

GROUND

INPUT1

INPUT2
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OR Gate Layout

• Here is an OR gate 
(with an inverted 
output, which is called 
a NOR)

Source: Mike Lai

OUTPUT

POWER SUPPLY

GROUND

INPUT1

INPUT2
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Full Adder Layout

• Here is a Full Adder

Source: Mike Lai
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16-bit Adder Layout

• Here is a complete 16-bit adder (it adds two 
numbers where each input can range from –
32,000 to +32,000)

• This adder contains 16 full adders (essentially) 
plus additional circuits for fast addition

Source: Mike Lai
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16-bit Multiplier Layout

• Here is a complete 16-bit x 16-bit multiplier (each 
input can range from –32,000 to +32,000)

Source: Mike Lai
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Next Topic: MOSFETs and Inverters 

• Inverter Layout

• MOS Structure

• Inverter Characteristics

– Transfer functions, noise margins

• CMOS Inverters
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