OCIN Workshop Wrapup

Bill Dally
Thanks To

• Funding
 – NSF - Timothy Pinkston, Federica Darema, Mike Foster
 – UC Discovery Program
• Organization
 – Jane Klickman, John Owens, Li-Shiuan Peh
• Attendees
 – Speakers and poster presenters
 – Working groups did a great job!
OCINs are a Critical Technology

• Key component of
 – emerging multi-core systems
 – MPSoCs
• Straightforward scaling will not satisfy need
 – 15x over power budget for channels
 – Off-chip organizations give excessive latency
 – Support needed for monitoring/debugging
• Research is needed to close the gap
 – Will enable future systems
 • enterprise to handheld
Enabling Circuits and Technology

• General areas to be addressed
 – Lower power communication
 – Lower power, fast memory

• Areas for future research (for year 2015 systems)
 – Low swing wires
 – Role of 3D integration for on-die interconnects
 – Role of photonics for on-die interconnects
 – Optimized metallization
 • Tradeoff high C lower layers for upper level layers
Application & Evaluation Research Issues

• Applications/Services
 – New programming models
 • performance aware constructs and annotations
 – Limits to scalability of coherence protocols (enhanced support for barriers, multicast)
 – Network support for classes of traffic
 – Models for RT guarantees (for SoC)
 – New types of network services
 • isolation, security, partitioning, error recovery, power-aware decisions, reconfiguration, ...

• Architectural benchmark suites & characterization

• Simulation tools and techniques
CAD Research Challenges

1. Network synthesis’ interface with system-level constraints and design
2. Hybrid custom and synthesized tool flow
3. Design validation
4. Impact of CMOS scaling and new interconnect technologies (e.g. 3D integration, optical)
5. End-user feedback design toolchain
6. Dynamic reconfigurable network tools
7. Beyond simulation
System Architecture Research Agenda

• Flow Control
 – Congestion control with bounded or limited buffering
 – Adaptive flow control/switching for multi-modal traffic and time varying application requirements

• Network interface
 – Light weight, generic: low latency, tightly coupled, general programming, flexible and general purpose
 – Virtualized network interface

• Technology-aware topologies: higher dimensions

• Fault Tolerance, Reconfiguration
 – Self tuning links and switches to process variation, soft errors
 – Network reconfiguration to adapt to application requirements
 – Support for partitioning and virtualization: isolation, performance across domains, accelerators, traffic heterogeneity

• Support for monitoring, debugging
Enabling Microarchitecture

• Minimizing latency & power are key
 – Fundamental research needed in routers, interfaces, electrical design
 – Reliability and variability are emerging challenges

• Programming interface is key
 – Must expose low latency to software
 – Programmability drives network constraints & features

• Broader impact: making multicore systems viable, usable, and effective
Potential for Tremendous Impact

- Continued scaling of computing
- Reduced design complexity, improved design reuse
- Reliability in the presence of errors/variation
- Simplified programming
Next Steps

• Report
 – Summarize findings of workshop
 – I’ll be asking for your help
• Special Issue of IEEE Micro
• Funding?