OCIN Workshop Wrapup

Bill Dally

Thanks To

- Funding
 - NSF Timothy Pinkston, Federica Darema, Mike Foster
 - UC Discovery Program
- Organization
 - Jane Klickman, John Owens, Li-Shiuan Peh
- Attendees
 - Speakers and poster presenters
 - Working groups did a great job!

OCINs are a Critical Technology

- Key component of
 - emerging multi-core systems
 - MPSoCs
- Straightforward scaling will not satisfy need
 - 15x over power budget for channels
 - Off-chip organizations give excessive latency
 - Support needed for monitoring/debugging
- Research is needed to close the gap
 - Will enable future systems
 - enterprise to handheld

Enabling Circuits and Technology

- General areas to be addressed
 - Lower power communication
 - Lower power, fast memory
- Areas for future research (for year 2015 systems)
 - Low swing wires
 - Role of 3D integration for on-die interconnects
 - Role of photonics for on-die interconnects
 - Optimized metallization
 - Tradeoff high C lower layers for upper level layers

Application & Evaluation Research Issues

- Applications/Services
 - New programming models
 - performance aware constructs and annotations
 - Limits to scalability of coherence protocols (enhanced support for barriers, multicast)
 - Network support for classes of traffic
 - Models for RT guarantees (for SoC)
 - New types of network services
 - isolation, security, partitioning, error recovery, power-aware decisions, reconfiguration, ...
- Architectural benchmark suites & characterization
- Simulation tools and techniques

CAD Research Challenges

- 1. Network synthesis' interface with system-level constraints and design
- 2. Hybrid custom and synthesized tool flow
- 3. Design validation
- 4. Impact of CMOS scaling and new interconnect technologies (e.g. 3D integration, optical)
- 5. End-user feedback design toolchain
- 6. Dynamic reconfigurable network tools
- 7. Beyond simulation

System Architecture Research Agenda

- Flow Control
 - Congestion control with bounded or limited buffering
 - Adaptive flow control/ switching for multi-modal traffic and time varying application requirements
- Network interface
 - Light weight, generic: low latency, tightly coupled, general programming, flexible and general purpose
 - Virtualized network interface
- Technology-aware topologies : higher dimensions
- Fault Tolerance, Reconfiguration
 - Self tuning links and switches to process variation, soft errors
 - Network reconfiguration to adapt to application requirements
 - Support for partitioning and virtualization: isolation, performance across domains, accelerators, traffic heterogeneity
- Support for monitoring, debugging

Enabling Microarchitecture

- Minimizing latency & power are key
 - Fundamental research needed in routers, interfaces, electrical design
 - Reliability and variability are emerging challenges
- Programming interface is key
 - Must expose low latency to software
 - Programmability drives network constraints & features
- Broader impact: making multicore systems viable, usable, and effective

Potential for Tremendous Impact

- Continued scaling of computing
- Reduced design complexity, improved design reuse
- Reliability in the presence of errors/variation
- Simplified programming

Next Steps

- Report
 - Summarize findings of workshop
 - I'll be asking for your help
- Special Issue of IEEE Micro
- Funding?