Technology and Circuits for On-Chip Networks

Dave Albonesi, Keren Bergman, Nathan Binkert, Shekhar Borkar, Chung-Kuan Cheng, Danny Cohen, Jo Ebergen, Ron Ho
Technology drivers for networks

Consider two systems as drivers

- **Enterprise-class, large-scale CMP-style machine**
 - Willing to spend on power to get performance (150W budget)
 - Cost is important

- **Hand-held personal electronics gizmo**
 - Cost is primary ($25)
 - Battery life drives a hard power limit (0.2W budget)
Characteristics and constraints

How technology and circuits affect systems

- Bandwidth density
- Communication latency
- Power & power density
- Design time and cost
 - Innovations require technology and CAD ecosystems
- Reliability and fault tolerance

Establish this first
Ensure this is okay
Check if this is possible
Enterprise-class CMP system

Assumptions for year 2015

- 22nm technology, 256 cores on a 400mm² die
- Mesh-style routing grid with 2*15*16=480 total links
- 150W total power, ~20% due to network
 > Of this 20%, 1/3 is the channel, 1/3 is the switch, 1/3 is the buffers
 > This turns out to be ~10W for each of the components
- 0.7V power supply, 150ps clock period (7GHz)
- Wires use 0.25mW/Gbps/mm & travel at 100ps/mm
CMP system network channel

Application requirement: 2TBps bisection BW

- **Latency?**
 - 1.25mm at 100ps/mm = 125ps < 150ps cycle time
 - 1 cycle per link hop: latency is not an immediate problem

- **Power?**
 - 2TBps = 16Tbps → 1Tbps per individual link
 - In a 16x16 grid, there are 2*15*16=480 individual links, each 1.25mm long
 - 480Tbps at 1.25mm → 150W @ 0.25mW/Gbps/mm
 - And 150 >> 10: Power is a problem!
CMP system network buffers

• Buffers needed at each router
 > Flits are 16B wide, we have 5 bidirectional ports → 160B = 1280
 > Depth set by timing: 4 flits deep (2 cycles FC, 2 cycles CRC)
 > So need 1280*4 = 5120b. 8X: 40Kb/router, or 10Mb/chip

• Latency okay: SRAM access time < 150ps

• Power?
 > 22nm technology: assume a 0.16μm2 SRAM cell (2-port)
 > Equivalent switching cap of 15% of the area → 2fF/cell
 > Over 10Mb, this is 20nF → CV^2f gives $20*0.7*0.7*7GHz= 70W$
 > 70W > 10W
 > Need low power, high performance memories
Research Agenda

• General areas to be addressed
 > Lower power communication
 > Lower power, fast memory

• Areas for future research (for year 2015 systems)
 > Low swing wires
 > Role of 3D integration for on-die interconnects
 > Role of photonics for on-die interconnects
 > Optimized metalization
 > Tradeoff high C lower layers for upper level layers
Personal electronics gizmo

• A heterogenous mix, few cores connected together

• Look at having 5% of power be network power
 > Assume 200mW is the hard power limit, so 10mW in network
 > Assume 5mW of this is for the channel (simple network)

• Assume 50mm2 die (from Wingard), so links ~ 7mm
 > 0.25 mW/Gbps/mm = 1.75mW/Gbps at 7mm links
 > For 5mW we can afford 2.8Gbps total bandwidth
 > This seems thin…