Research Directions
for On-chip Network
Microarchitectures

Luca Carloni, Steve Keckler,
Robert Mullins, Vijay Narayanan,
Steve Reinhardt, Michael Taylor

12/7/06




Overview

e Minimizing latency & power are key

Fundamental research needed in routers, interfaces,
electrical design

Reliability and variability are emerging challenges
e Programming interface is key
Must expose low latency to software
Programmability drives network constraints & features

e Broader impact: making multicore systems
viable, usable, and effective



Outline

e Crosscutting issues
Latency
Power

e Other key issues
Programmability
Variability
Technology
System management
Design tools




Driving Latency Down

e Motivation
Lower overheads simplify programming
Less need for programmers to avoid communication
Exploit low fundamental latency of integration
Don’t throw away benefit by imposing interface/routing overheads
Enable closer cooperation between cores
e Enabling technologies
Network interfaces
Thin abstractions: expose hardware to software
Integration with processor core
Programming models to leverage abstractions (and vice versa)
Router innovations
Fewer pipe stages, higher frequency (within power envelope)
Maintaining low latency under load
|dentifying/prioritizing latency critical communications
Exploiting static information (e.g., circuit switching)



Power

e Different design points demand different solutions

e Absolute power
Embedded vs. high performance
Other intermediate points?
Power/thermal-constrained routers & routing
Stay within envelope
Exploit static information / common cases

e Ratio of compute/network power
Depends on compute/communicate ratio

Can we trade this off dynamically?

Across different apps
Due to phase behavior within app
E.g., DVFS in the network (as well as cores)




Programmer Support

e What does the programmer want?
Fast and robust networks
Easy to use (efficient network access, easy to program)
Ability to reason about performance, etc.

e Performance and Robustness
Low latency in hardware - fast routers, efficient Nis
Latency in software (programming model support)
Microarchitecture support for higher level mechanisms
Examples: data transfer (small/large), synchronization, invocation, etc.
Microarchitecture support for robustness
Priority/QOS
Microarchitecture support for end-to-end deadlock avoidance
Example: network driven exceptions for unusual cases
Pushing intelligence into the network
Cache coherence just one example
Common interface for different scales of network
On-chip, off-chip, board, rack, system
Can we unify to common protocols, user-interfaces?
Can microarchitecture make unification efficient?

e Understanding network behavior
Predictability / cost model for application programmer
Measurement & feedback to programmer
Is network power something that should be exposed for optimization in some way?




Variability
e Sources of variability
Workload, across and within applications
Burstiness, stream vs. unstructured, large vs. small messages
Message classes (data, synch, etc.)
Fabrication process
e Opportunities and challenges

What are the message types, what are the networks

How should individual networks be optimized based on different
traffic characteristics

Variability provides opportunity to improve power efficiency
Dynamically ride the pareto curve (power/performance)
Shift power from network to execution (or vice versa)
Can this be hidden from programmer?
Fabrication process tolerant networks
Post fabrication tuning, exploit elastic network properties




Technology

Current: How do design flow choices impact NOC
micro-architecture design?

custom vs asic
floorplan impact on micro-architecture effectiveness
Short-Term: What will be the impact of technology
scaling?
router vs. link costs (delay/power)
router vs. link features (diagnostics, error correction)
Long-Term: What will be the impact of emerging
technologies?

3D integration, carbon nanotubes, optical communication
new switching fabrics, arbitration, buffering



System Management

e NOC can facilitate distributed diagnostics and self-adaptation
not just for NOC, but for the overall system
process variations, reliability, dynamic variations, security, power
management
e architectural support
sensing
online monitors and performance counters for network traffic
processing
aggregation, system-state recognition and future-state prediction
actuating

[power] knobs for dynamic voltage/frequency scaling (DVFS) of
routers, cores, for dynamic shut-down of system subsets

[security] on-demand encryption and link blocking for security
e Challenge: How to do all this while keeping overheads low?



Design tools

e Stochastic vs. realistic workloads
e How valid is trace-driven evaluation?

e Rapid evaluation
FPGAs
Analytical techniques

e Repeatability of research experiments




