

Interconnection technologies

Ron Ho VLSI Research Group Sun Microsystems Laboratories

Acknowledgements

- Many contributors to the work described here
 - > Robert Drost, David Hopkins, Alex Chow, Tarik Ono, Jo Ebergen
 - > ... and the entire Sun Labs VLSI Research Group
 - > Danny Cohen

Multicore chips today

- Niagara: 8 cores
 - > 32 threads (4 threads/core), 1 shared FP
 - > 90nm CMOS, 1.2GHz, 63W, 380mm²
 - > High-volume production now
- Niagara2: 8 (improved) cores
 - > 64 threads (8 threads/core), 1 FP per core
 - > 65nm CMOS, 342mm²
 - > Shipping systems in 2H07

Multicore chips tomorrow?

- How do you scale up to tens or hundreds of cores?
 - > ...Assuming you want to (more total power for high performance)
 - > ...And on a single chip: avoid the costs of chip-to-chip IO
 - > Bumps are big (180 μ m), links are power-hungry (20pJ/bit = 20mW/Gbps)
- You need to do some combination of:
 - > Making the cores very small
 - > But you lose functionality: what kind of programming models do you want?
 - > Making the die very big
 - > But you lose the yield/cost battle very quickly

Sun Labs, Sun Microsystems, Inc.

A different direction...

- We can rethink the "single-chip" requirement...
 - > If we reduce (eliminate) the costs of chip-to-chip communication
 - > Power, area (bandwidth density), latency, known-good-die
- Break a multi-core chip into a many-chip-system
 - > Smaller chips lead to higher yields and lower cost
 - > Different chips lead to system adaptability and reconfigurability
 - > Aggregate systems of chips effectively break the reticle limit
- Enable a broad set of interconnection explorations

Proximity I/O

- Pioneered by Ivan Sutherland at Sun Labs
- The big idea:

Proximity I/O benefits

Bandwidth density 60x-100x greater than balls

- Much lower power
 - > No ESD required
 - > Use wide parallel links instead of narrow SerDes links
 - > Very small Tx and Rx circuits

Source: Drost, Sun, CICC 2003

Proximity I/O challenges

- Misalignment is the proverbial monkey's wrench
 - > Initial imperfect chip placement
 - > Dynamic chip movement from vibration or thermal expansion

- A robust solution is (at least) two-pronged
 - > Combination of specialized packaging and custom electronics
 - > Here, discuss some of the electronic/circuit strategy

Fixing misalignment

- Detect misalignment using Vernier-like arrays
 - > Measure capacitance between chips to sub-fF resolution
- Correct in-plane misalignment using data steering

Dealing with noise

- Receivers are differential sense-amplifiers
 - > "Butterfly" scheme rejects noise (receivers are offset-limited)
 - > We employ a clock—it uses unclocked receivers with larger pads

Source: Hopkins, Sun, ISSCC 2007

Silicon measurements

- 144b Proximity I/O datapath, 180nm TSMC chip
 - > 1.8Gbps per pin for 260Gbps in 0.5mm²
 - > Measured BER<10⁻¹⁵
 - > 3pJ/bit at a 1.8V power supply
 - > > 0.7UI timing margin, > 200mV voltage margin at speed
 - > Measured sensitivity to chip separation

Source: Hopkins, Sun, ISSCC 2007

Sun Labs, Sun Microsystems, Inc.

Proximity I/O as an enabler

- Low-cost chip-to-chip communication
 - > Off-chip I/O looks like an extension of on-chip wires
 - > Many chips look like a (big) single chip
 - > What kinds of interconnect networks should we consider?

Proximity I/O-based grids

- Another, perhaps more realistic grid
 - > All big (high-power) chips are all face-up on a cold plate
 - > Face-down chips merely transmit data

Natural extension to various network topologies

A red flag?

- Such a system will have lots of VLSI wires
 - > The entire interconnection network consists of on-chip wires
- Latency and bandwidth characteristics well-known
 - > ...And so are the energy costs: $E=C^*V^*\Delta V$
 - > Cap is about 0.45pF/mm (incl. repeaters), and not really scaling
 - > Voltage is about 1V, and not really scaling
 - > Therefore, energy is about 0.45pJ/bit/mm of linear length
 - > So 100 64b buses at 4GHz, 10% activity over 20mm: 24W!
- Need an efficient wiring system

Efficient capacitively-driven wires $\int \underbrace{\bigcap_{C_c} \underbrace{R_{wire}, C_{wire}}_{C_c = (C_{wire} + C_{load})/n} \underbrace{\prod_{where n = 10 - 20}^{C_{load}} \underbrace{\prod_{c = 10 - 20}^{C$

- Reduced power: low voltage swing on wires
 Swing is V_{dd}/(n+1) without requiring a second power supply
- Reduced power: small load seen by driver
 > Allows use of a 1/n-th sized driver, saving power and area
- Reduced latency: capacitor pre-emphasizes edges
 > Also, charge distribution effectively cuts wire delay in half

Pre-emphasis extends bandwidth

- The inline capacitor acts as a high-frequency short
 - > Example of a 14mm minimum width wire (simulated)
 - > Bandwidth RC-limited to 50MHz
 - > Capacitor (of 1/20th total capacitance) extends it to 180MHz

Making a better repeater

- Analysis of energy-efficiency shows benefits
 - > Compare against repeaters for a 10mm wire in a 180nm process

Source: Ho, Sun, ISSCC 2007

Building pitchfork capacitors

- Exploit a "problem" of wires: sidewall capacitance
 - > Can use more tines or multiple wire layers

Coupling caps ideal for summing junctions

> Use them to build a cheap FIR filter

Some costs

• Differential wires cost area, power; twisted for noise

- Sense-amps have offset and biasing requirements
 > Biasing can use refresh, with (n+1) channels for an n-bit bus
- Verification requires some care
 - > Correctness comes from being near, not from being connected!

Silicon measurements

- Multiple datapaths on a 180nm TSMC 1.8V chip
 - > Measured 10x less energy at a 50mV swing (max. savings 18x)
 - > Measured 4x bandwidth extension from pre-emphasis
 - > Bit error rates < 10⁻¹¹ (limited by test time)
 - > 50% UI eye opening on each experiment
- 14mm, unrepeated, min.width
 - > RC-limited to 55MHz
 - > Capacitor pushes it to 200MHz
 - > Sub-optimal 2-tap FIR (wrong delay)

Look at new system architectures

- A pair of complementary enabling technologies
 - > Multi-chip grids connected using Proximity I/O and efficient wires
 - > Chip-to-chip latency, bandwidth, power equal to on-chip wires
 - > Long on-chip wires can be lower power and higher performance
- Multi-chip grids look like a big "virtual" chip
 > With (re)configurability, cost, and "reticle-breaking" benefits
- A question: how to best interconnect these chips?
 > Or: how to best arrange these chips for an interconnect network?

Interconnection technologies

Ron Ho, Ph.D. ron.ho@sun.com