On-Chip Networks: Do We Need More Research?

José Duato

Dept. of Computer Engineering (DISCA) Technical University of Valencia, Spain E-mail: jduato@disca.upv.es

NSF Workshop

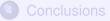
José Duato (DISCA, UPV)

On-Chip Networks

NSF Workshop 1 / 20

< ロ > < 同 > < 回 > < 回 >

2 New Challenges and Opportunities



New Challenges and Opportunities

3 A Case Study

э

イロト イヨト イヨト イヨト

Introduction

- The trend toward multi-core processing chips is now a well established one
 - Mass market production of dual-core and quad-core processor chips
 - Trend toward massive multi-core chips based on much simpler cores (e.g. Sun UltraSparc T1, Nvidia 8800 GT/GTX GPUs)
 - Heterogeneous multi-core chips (processors plus accelerators) proposed (mostly for the embedded market)
- Beyond a certain number of cores (say, 8 to 16), an on-chip network with point-to-point links becomes necessary to interconnect cores, cache banks and memory controllers among them (and possibly with on-chip routers for external communication as well) without the constraints imposed by buses

- The trend toward multi-core processing chips is now a well established one
 - Mass market production of dual-core and quad-core processor chips
 - Trend toward massive multi-core chips based on much simpler cores (e.g. Sun UltraSparc T1, Nvidia 8800 GT/GTX GPUs)
 - Heterogeneous multi-core chips (processors plus accelerators) proposed (mostly for the embedded market)
- Beyond a certain number of cores (say, 8 to 16), an on-chip network with point-to-point links becomes necessary to interconnect cores, cache banks and memory controllers among them (and possibly with on-chip routers for external communication as well) without the constraints imposed by buses.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Most of the design challenges for current and future on-chip networks are very similar to the ones previously faced by off-chip network designers:
 - Selection of a suitable topology and routing algorithm
 - Definition of efficient flow control and switching techniques
 - Designing a compact and fast router
 - Designing flexible and efficient network interfaces
 - Providing support for fault tolerance
 - Plus some additional support depending on the application area: collective communications, QoS, congestion management

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Two decades ago, the challenge was to design efficient single-chip routers
 - New switching and flow control techniques (e.g. wormhole and virtual channels) were proposed to drastically reduce buffer sizes and be able to design routers that could fit into a single chip. Also, packets no longer had to be buffered in the host memory
 - Low-dimensional topologies were proposed to use pin bandwidth efficiently: a few wide links are preferred over many narrow links
 - Simple and efficient routing algorithms (e.g. DOR), amenable for hardwired implementations, were proposed to minimize latency
 - Wide links together with pipelined packet transmission (i.e. wormhole) and hardwired routing delivered the lowest latency
 - Virtual channels allowed blocked packets to be bypassed by other packets, achieving a reasonably high utilization of link bandwidth

 Overall, these innovations made single-chip routers feasible, increasing bandwidth and reducing latency by one and three orders of magnitude, respectively.

José Duato (DISCA, UPV)

- Two decades ago, the challenge was to design efficient single-chip routers
 - New switching and flow control techniques (e.g. wormhole and virtual channels) were proposed to drastically reduce buffer sizes and be able to design routers that could fit into a single chip. Also, packets no longer had to be buffered in the host memory
 - Low-dimensional topologies were proposed to use pin bandwidth efficiently: a few wide links are preferred over many narrow links
 - Simple and efficient routing algorithms (e.g. DOR), amenable for hardwired implementations, were proposed to minimize latency
 - Wide links together with pipelined packet transmission (i.e. wormhole) and hardwired routing delivered the lowest latency
 - Virtual channels allowed blocked packets to be bypassed by other packets, achieving a reasonably high utilization of link bandwidth
- Overall, these innovations made single-chip routers feasible, increasing bandwidth and reducing latency by one and three orders of magnitude, respectively.

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on on chip networks3.

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on on chip networks3.

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on on chip networks3.

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on conchip networks 200

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on conchip networks 200

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on conchip networks2.

José Duato (DISCA, UPV)

- The first microprocessors implemented processor architectures similar to those used two decades back in time. Similarly, on-chip networks can be designed now by using the techniques proposed two decades ago for single-chip routers.
 - Low-dimensional network topologies seem to be very appropriate for on-chip implementations. A 2-D mesh can be implemented by using only short links for neighbor to neighbor communication
 - Wormhole switching allows the design of very compact routers by implementing very small buffers
 - Low-dimensional topologies allow the design of very compact and fast routers, with small internal crossbars and simple arbiters
 - The use of wide links leads to very low packet latency
 - Ironically, the design constraint proposed by Bill Dally two decades ago (i.e. bisection bandwidth) has never become true for off-chip networks but will very likely become true for on-chip networks

What is new? Do we need further research on on-chip networks?

José Duato (DISCA, UPV)

Introduction

3 A Case Study

э

イロト イポト イヨト イヨト

New Challenges and Opportunities The Microprocessor Analogy

- Although microprocessor microarchitecture was initially based on simple accumulator-based designs and, for several years, new designs incorporated previously proposed ideas, a lot of novel research has been developed for microprocessors
- There have been even disruptive approaches (RISC vs. CISC) that dramatically changed the way processors were architected
- So, we should expect innovation in on-chip networks in the coming years, but:
 - What is the equivalent to the RISC revolution?
 - Was it the design of single-chip routers 20 years ago? Or should we expect dramatic enhancements in the coming years?
- I believe that most of the breakthrough architectural ideas have already been proposed, but there is still room for optimized designs tailored to particular requirements as well as new technologies

New Challenges and Opportunities The Microprocessor Analogy

- Although microprocessor microarchitecture was initially based on simple accumulator-based designs and, for several years, new designs incorporated previously proposed ideas, a lot of novel research has been developed for microprocessors
- There have been even disruptive approaches (RISC vs. CISC) that dramatically changed the way processors were architected
- So, we should expect innovation in on-chip networks in the coming years, but:
 - What is the equivalent to the RISC revolution?
 - Was it the design of single-chip routers 20 years ago? Or should we expect dramatic enhancements in the coming years?
- I believe that most of the breakthrough architectural ideas have already been proposed, but there is still room for optimized designs tailored to particular requirements as well as new technologies

New Challenges and Opportunities The Microprocessor Analogy

- Although microprocessor microarchitecture was initially based on simple accumulator-based designs and, for several years, new designs incorporated previously proposed ideas, a lot of novel research has been developed for microprocessors
- There have been even disruptive approaches (RISC vs. CISC) that dramatically changed the way processors were architected
- So, we should expect innovation in on-chip networks in the coming years, but:
 - What is the equivalent to the RISC revolution?
 - Was it the design of single-chip routers 20 years ago? Or should we expect dramatic enhancements in the coming years?
- I believe that most of the breakthrough architectural ideas have already been proposed, but there is still room for optimized designs tailored to particular requirements as well as new technologies

- Power consumption is leading to new strategies for both on-chip and off-chip networks (DVFS, on/off links, variable width links)
- Multiple metal layers within the chip allow for optimizations not feasible outside the chip (flit-reservation flow control, link widths tailored to packet types, optimized topologies, etc)
- Process variability requires new transmission techniques to avoid having to lower the clock frequency for the entire chip
- Reducing chip-kill in the presence of permanent faults requires some network reconfiguration technique
- There are several ongoing efforts toward developing tools for design space exploration, both for on-chip and off-chip interconnects

José Duato (DISCA, UPV)

- Power consumption is leading to new strategies for both on-chip and off-chip networks (DVFS, on/off links, variable width links)
- Multiple metal layers within the chip allow for optimizations not feasible outside the chip (flit-reservation flow control, link widths tailored to packet types, optimized topologies, etc)
- Process variability requires new transmission techniques to avoid having to lower the clock frequency for the entire chip
- Reducing chip-kill in the presence of permanent faults requires some network reconfiguration technique
- There are several ongoing efforts toward developing tools for design space exploration, both for on-chip and off-chip interconnects

- Power consumption is leading to new strategies for both on-chip and off-chip networks (DVFS, on/off links, variable width links)
- Multiple metal layers within the chip allow for optimizations not feasible outside the chip (flit-reservation flow control, link widths tailored to packet types, optimized topologies, etc)
- Process variability requires new transmission techniques to avoid having to lower the clock frequency for the entire chip
- Reducing chip-kill in the presence of permanent faults requires some network reconfiguration technique
- There are several ongoing efforts toward developing tools for design space exploration, both for on-chip and off-chip interconnects

- Power consumption is leading to new strategies for both on-chip and off-chip networks (DVFS, on/off links, variable width links)
- Multiple metal layers within the chip allow for optimizations not feasible outside the chip (flit-reservation flow control, link widths tailored to packet types, optimized topologies, etc)
- Process variability requires new transmission techniques to avoid having to lower the clock frequency for the entire chip
- Reducing chip-kill in the presence of permanent faults requires some network reconfiguration technique
- There are several ongoing efforts toward developing tools for design space exploration, both for on-chip and off-chip interconnects

José Duato (DISCA, UPV)

- Power consumption is leading to new strategies for both on-chip and off-chip networks (DVFS, on/off links, variable width links)
- Multiple metal layers within the chip allow for optimizations not feasible outside the chip (flit-reservation flow control, link widths tailored to packet types, optimized topologies, etc)
- Process variability requires new transmission techniques to avoid having to lower the clock frequency for the entire chip
- Reducing chip-kill in the presence of permanent faults requires some network reconfiguration technique
- There are several ongoing efforts toward developing tools for design space exploration, both for on-chip and off-chip interconnects

José Duato (DISCA, UPV)

On-Chip Networks

NSF Workshop 10 / 2

One of the areas where significant progress can be made is the network interface:

- For off-chip networks, most current network interfaces require moving data through the PCI-Express interface, thus increasing latency dramatically
- For on-chip networks, extremely low latency is required
- Interprocess communication (either shared memory or message passing) should go from cache to cache, without accessing external memory
- Many processors/cores concurrently accessing the network interface: need for scalable virtualization

We need low-latency tightly-coupled virtualized network interfaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Standardization?

- At first glance, standardization of on-chip networks seems to be a stupid idea: No external interfaces; each manufacturer will use its own proprietary interconnect
- VLSI design based on reusing existing IP cores is becoming common practice
- Defining a standard interface for on-chip networks would allow a much simpler and efficient reuse of existing IP cores in future homogeneous and heterogeneous multi-core designs

Introduction

New Challenges and Opportunities

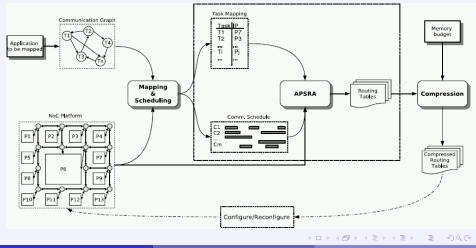
3 A Case Study

4 Conclusions

José Duato (DISCA, UPV)

э

イロト イヨト イヨト イヨト


Multi-core Embedded Devices

- Embedded devices usually run just one or a few applications
- General-purpose processors are not suitable for running those applications because they are either too slow or too power hungry
- Ultra low-power processors combined with hardware accelerators are the preferred choice for most designers
- Recent designs for the embedded market use multi-core processors to reduce power consumption: more efficient than just DVFS
- Future embedded systems may use a large number of heterogeneous cores to deliver the best tradeoff between performance and power consumption

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Opportunities for Optimization

 For a given application running on a multi-core chip, each process may not communicate with every other process

José Duato (DISCA, UPV)

On-Chip Networks

NSF Workshop 15 / 20

Opportunities for Optimization

- Task mapping can be optimized so as to minimize communication among cores: less bandwidth requirements and power consumption
- Routing algorithms do not need to provide paths among every pair of nodes
- Routing algorithms may dynamically change according to application needs

イロン イ理 とく ヨン ・ ヨン …

Required Support

- Task mapping strategies for heterogenous multi-core systems that take the communication graph into account
- Optimized routing algorithms that minimize communication latency in partially connected networks
- Network reconfiguration techniques that dynamically adapt routing algorithms, and even network topology, to application communication requirements

< ロ > < 回 > < 回 > < 回 > < 回 >

What is Really New?

- Most task mapping strategies proposed up to now did not consider communication costs
- Routing algorithms that do not connect all the nodes in the network:
 - Do we allow routing through nodes that will never inject/receive a packet?
 - How much power is saved by not routing among all the nodes?
- Network reconfiguration techniques for on-chip networks:
 - How do we implement reconfigurable routing algorithms without having to implement large and slow routing tables?
 - How can we implement dynamic topology reconfiguration without introducing too much overhead?

What is Really New?

- Most task mapping strategies proposed up to now did not consider communication costs
- Routing algorithms that do not connect all the nodes in the network:
 - Do we allow routing through nodes that will never inject/receive a packet?
 - How much power is saved by not routing among all the nodes?

• Network reconfiguration techniques for on-chip networks:

- How do we implement reconfigurable routing algorithms without having to implement large and slow routing tables?
- How can we implement dynamic topology reconfiguration without introducing too much overhead?

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

What is Really New?

- Most task mapping strategies proposed up to now did not consider communication costs
- Routing algorithms that do not connect all the nodes in the network:
 - Do we allow routing through nodes that will never inject/receive a packet?
 - How much power is saved by not routing among all the nodes?
- Network reconfiguration techniques for on-chip networks:
 - How do we implement reconfigurable routing algorithms without having to implement large and slow routing tables?
 - How can we implement dynamic topology reconfiguration without introducing too much overhead?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

2 New Challenges and Opportunities

3 A Case Study

э

イロト イヨト イヨト イヨト

Conclusions

- On-chip networks are the result of increasing interest on multi-core processor chips (CMPs). Many systems can be designed just by reusing results previously proposed for off-chip networks
- Many people are reinventing the wheel. It is necessary to analyze what is really new
- Most breakthrough ideas have already been invented, but there are still many opportunities for innovation
- New application areas will impose new sets of design constraints:
 - Previously proposed generic techniques need to be adapted to the new constraints
 - Engineering process: Highly optimized designs will be required

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- On-chip networks are the result of increasing interest on multi-core processor chips (CMPs). Many systems can be designed just by reusing results previously proposed for off-chip networks
- Many people are reinventing the wheel. It is necessary to analyze what is really new
- Most breakthrough ideas have already been invented, but there are still many opportunities for innovation
- New application areas will impose new sets of design constraints:
 - Previously proposed generic techniques need to be adapted to the new constraints
 - Engineering process: Highly optimized designs will be required

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A