Future Directions for On-Chip Interconnection Networks

William J. Dally
Computer Systems Laboratory
Stanford University

OCIN Workshop
December 7, 2006
State of Off-Chip Networks
Technology Trends...

![Technology Trends Graph](image)

- TorusRoutingChip
- Intel iPSC/2
- J-Machine
- CM-5
- Intel Paragon XP
- Cray T3D
- MIT Alewife
- IBM Vulcan
- Cray T3E
- SGI Origin 2000
- AlphaServer GS320
- IBM SP Switch2
- Quadrics QsNet
- Cray X1
- Velio 3003
- IBM HPS
- SGI Altix 3000
- Cray XT3
- YARC
Some History

MARS Router 1984
Torus Routing Chip 1985
Network Design Frame 1988
MDP 1991

Reliable Router 1994
MAP 1998
Imagine 2002
YARC 2006
Some very good books
Summary of Off-Chip Networks*

• Topology
 - Fit to packaging and signaling technology
 - High-radix - Clos or FlatBfly gives lowest cost

• Routing
 - Global adaptive routing balances load w/o destroying locality

• Flow control
 - Virtual channels/virtual cut-through

*oversimplified
So, what’s different about on-chip networks?
What’s different about OCI Ns?

• **Cost**
 - Off: cost is channels - pins, connectors, cables, optics
 - On: cost is storage and switches, wires plentiful
 - Drives networks with many wide channels, few buffers
 • Low-radix augmented mesh

• **Channel Characteristics**
 - On-chip RC lines - need a repeater every 1mm
 - Short distance - low latency
 - Can put logic in repeaters, motivates low-latency routers

• **Workload**
 - CMP cache traffic
 - SoC isochronous flows

• **Differences motivate some surprising differences from on-chip networks**
Example CMP OCI N
On-Chip Interconnection Network

System = Processor Tiles

Source: Balfour and Dally, ICS 06
On-Chip Interconnection Network (2)

System = Processor Tiles + Channels

Source: Balfour and Dally, ICS 06
System = Processor Tiles + Channels + Routers

Source: Balfour and Dally, ICS 06
Router Architecture

- Input-queued
- Virtual Channel
- Speculative Pipeline

Source: Balfour and Dally, ICS 06
Router Area

Accurate modeling requires floorplan

Source: Balfour and Dally, ICS 06
Architecture very sensitive to element properties
Enabling Technology is a Prerequisite

- Channels, Buffers, Switches
- Topology, Routing, Flow Control
- Microarchitecture
Channels

- 10x to 100x power reduction
- Eq signaling for faster propagation and increased repeater distance (D & P Chapter 8, Heaton 01)
- Elastic channels provide “free” buffers (Mizuno 01)
- Send 4-8 bits per cycle per wire (assuming 20FO4 cycle)
Buffers

- Dense arrays (vs. Flip-Flops or Latches) 10x area/bit
- Low-swing write
Switches

- Low-swing bit lines
- Operate at channel rate
 - Reduces area and hence power
- Equalized drive
- Buffered crosspoints
- Integral allocation
Properties of these elements drives optimal network organization
Torus

Source: Balfour and Dally, ICS 06
Concentrated Mesh

Source: Balfour and Dally, ICS 06
Express Links

Source: Balfour and Dally, ICS 06
Network Replication

- Abundant wire resources build second network
 - Resource allocation tradeoff

Wide:
 [+] Serialization Latency
 [+] Router Energy Efficiency
 [-] Router Area

Replicated:
 [+] Decoupled Resources
 [+] Area Efficiency
 [?] Energy Efficiency
 [-] Serialization Latency

[+] SCALABLE

Source: Balfour and Dally, ICS 06
Energy Efficiency

Network Energy × Completion Time
(normalized to Torus network)

Source: Balfour and Dally, ICS 06
Large differences in efficiency.

Optimal topology not obvious, not regular and very sensitive to properties of network elements.
Where is Energy Expended?

Source: Balfour and Dally, ICS 06
A Research Agenda

1. Develop efficient network elements
 • Channels, buffers, switches, allocators
 • Opportunities for >10x improvements in efficiency
 • Enabling technology

2. Capture workloads representative of CMPs and SoCs

3. Develop optimal topologies for 1 and 2

4. Develop efficient routing and flow-control methods
 • Load-balanced routing
 • Buffer-efficient flow control

5. Develop efficient router microarchitectures
 • Single cycle, area efficient

6. Prototype to test assumptions

7. Iterate
Summary

• OCNs critically important
 – Emerging CMPs, SoCs

• Very different than off-chip networks
 – Cost - largely area
 – Channel properties

• OCIN design very sensitive to implementation
 – Need floorplans, accurate estimates

• Efficient network elements are enabling technology
 – Change the equation for network design

• Optimal design
 – Concentration, replicated networks

• Many research opportunities