Future Directions for On-Chip Interconnection Networks

William J. Dally Computer Systems Laboratory Stanford University

> OCIN Workshop December 7, 2006

State of Off-Chip Networks

Technology Trends...

Some History

OCIN: 4

I RAN ARAM ARAM ARAM ARAM ARAM ARAM

Some very good books

Summary of Off-Chip Networks*

- Topology
 - Fit to packaging and signaling technology
 - High-radix Clos or FlatBfly gives lowest cost
- Routing
 - Global adaptive routing balances load w/o destroying locality
- Flow control
 - Virtual channels/virtual cut-through

Dec 7, 2006

So, what's different about on-chip networks?

What's different about OCINs?

- Cost
 - Off: cost is channels pins, connectors, cables, optics
 - On: cost is storage and switches, wires plentiful
 - Drives networks with many wide channels, few buffers
 - Low-radix augmented mesh
- Channel Characteristics
 - On-chip RC lines need a repeater every 1mm
 - Short distance low latency
 - Can put logic in repeaters, motivates low-latency routers
- Workload
 - CMP cache traffic
 - SoC isochronous flows
- Differences motivate some surprising differences from on-chip networks

Example CMP OCIN

On-Chip Interconnection Network

Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р
Р	Р	Р	Р	Р	Р	Р	Р

System = Processor Tiles

On-Chip Interconnection Network (2)

System = Processor Tiles + Channels

Interconnection Network (3)

System = Processor Tiles + Channels + Routers

Router Architecture

- Input-queued
- Virtual Channel
- Speculative Pipeline

Router Area

Architecture very sensitive to element properties

Enabling Technology is a Prerequisite

Channels

- 10x to 100x power reduction
- Eq signaling for faster propagation and increased repeater distance (D & P Chapter 8, Heaton 01)
- Elastic channels provide "free" buffers (Mizuno 01)
- Send 4-8 bits per cycle per wire (assuming 20FO4 cycle)

Buffers

- Dense arrays (vs. Flip-Flops or Latches) 10x area/bit
- Low-swing write

Switches

- Low-swing bit lines
- Operate at channel rate
 - Reduces area and hence power
- Equalized drive
- Buffered crosspoints
- Integral allocation

Properties of these elements drives optimal network organization

Torus

Concentrated Mesh

Express Links

Network Replication

- Abundant wire resources build second network
 - Resource allocation tradeoff

Wide:

- [+] Serialization Latency
- [+] Router Energy Efficiency
- [-] Router Area

Replicated:

- [+] Decoupled Resources
- [+] Area Efficiency
- [?] Energy Efficiency
- [-] Serialization Latency

[+] SCALABLE

Energy Efficiency

Network Energy × Completion Time (normalized to Torus network)

Large differences in efficiency.

Optimal topology not obvious, not regular and very sensitive to properties of network elements

Where is Energy Expended?

A Research Agenda

- 1. Develop efficient network elements
 - Channels, buffers, switches, allocators
 - Opportunities for >10x improvements in efficiency
 - Enabling technology
- 2. Capture workloads representative of CMPs and SoCs
- 3. Develop optimal topologies for 1 and 2
- 4. Develop efficient routing and flow-control methods
 - Load-balanced routing
 - Buffer-efficient flow control
- 5. Develop efficient router microarchitectures
 - Single cycle, area efficient
- 6. Prototype to test assumptions
- 7. Iterate

Summary

- OCNs critically important
 - Emerging CMPs, SoCs
- Very different than off-chip networks
 - Cost largely area
 - Channel properties
- OCIN design very sensitive to implementation
 - Need floorplans, accurate estimates
- Efficient network elements are enabling technology
 - Change the equation for network design
- Optimal design
 - Concentration, replicated networks
- Many research opportunities