CAD and Design Tools for On-Chip Networks

Luca Benini, Mark Hummel, Olav Lysne, Li-Shiuan Peh, Li Shang, Mithuna Thottethodi,
Research Challenges

1. Network synthesis’ interface with system-level constraints and design
2. Hybrid custom and synthesized tool flow
3. Design validation
4. Impact of CMOS scaling and new interconnect technologies (e.g. 3D integration, optical)
5. End-user feedback design toolchain
6. Dynamic reconfigurable network tools
7. Beyond simulation
Overview

1. Validation
2. Custom IP blocks
3. Validation
4. CMOS & interconnect techniques
5. End-user feedback
6. Dyn-reconf synthesis
Overview

1. Custom IP blocks
2. Application instrumentation
3. Many-core system constraints
4. CMOS & interconnect techniques
5. End-user feedback
6. Dyn-reconf synthesis
7. Validation

End-user feedback leads to Many-core system constraints, which in turn lead to Application instrumentation. This instrumentation is then used in Dyn-reconf synthesis to develop CMOS & interconnect techniques. The validated system is then returned to the end-user for feedback, creating a continuous loop.
Network synthesis challenges with many-core chips

• Interface with system-level constraints and requirements
• Traffic modeling
• High-performance yet standard network interface with a variety of processor cores?
• Network synthesis and design can influence and shape communications at the system level
• Synthesis tool has to take into account both on-chip and off-chip networks
• Specification of hard vs soft constraints; Sensitivity analysis
Hybrid custom and synthesized tool flow

• How hard custom-designed blocks can be readily synthesized
• What are the leaf cells for network synthesis?
• Specialized libraries for networks?
 – E.g. optimized crossbar?
 – Specialized high-performance link macros?
 – Implications for entire EDA tool flow.
Network validation

• How to make sure the designs are robust
• Made tougher in the face of process variations, run-time management
• Over-designing for robustness may lead to high cost
• Validation cost -> input to synthesis chain
• Variability may be higher
Impact of CMOS scaling and new interconnect technologies

- New timing, area, power, thermal, reliability models
- High-level physical design retooling
- New network design space
- CMOS scaling may require more co-synthesis
End-user feedback design toolchain

- E.g. rewrite FPGA design for different apps
- Run-time monitoring and optimization
- Feedback of network traffic to end users
- Specialized chips make network feedback and monitoring more important.
- Can learn from Internet and sensor networks instrumentation and monitoring tools
- Monitoring needs to track at the system-level, e.g. contention at a single sink, e.g. memory port
Dynamic network reconfiguration toolchain

- Soft router cores
- Configured on-the-fly
- Similar to JIT compilation
- Reconfiguring between circuit and packet switched networks
Beyond simulation

• Formal methods
• Queuing analysis
• Unique:
 – Physical challenges
 – Link-level flow control vs. end-to-end
 – Scale of on-chip networks vs. off-chip ones
Broader Impacts

• All challenges will critically impact MPSoC industry
• Challenges 2, 3, 4, 5 will be relevant to the general-purpose computing industry
• Enables complex, correct designs that will otherwise be impossible
• Design automation can facilitate the adoption of on-chip networks (by easing entry)
• Interactions with other working groups
 – Technology & Circuits (Challenge 4 – Impact of technology)
 – Evaluation and Driving Applications (Enabling Technology for these)
 – System Architecture (Challenge 1 – Interface with system constraints)
 – Microarchitecture (Challenge 2 – Custom IP blocks)