

David H. Albonesi

José F. Martínez

ON

Nevin Kırman

Photonic Switching Element (PSE)

switch

ON state:

OFF state

carrier injection

coupling into ring

signal switched

negligible power.

passive waveguide crossover

Broadband ring-resonator

Meyrem Kırman **Cornell University Computer Systems Lab**

http://csl.cornell.edu

Objective:

Co-architect high bandwidth optical switch architectures and fine grain Chip Multi-Processors to speed up high bandwidth-demand applications.

Primary Research Focus:

Matthew A. Watkins

- Design a high bandwidth grid network implemented on a dedicated optical layer composed of very low power optical components
- Co-architect a fine-grain CMP system of lowpower cores that enables learning algorithms to fully exploit high bandwidth, low power communication

Optical data network grid

- 2x spatial overprovisioning (i.e. two 4x4 switches per gateway per dimension)
- Message generation occurs once and then messages are routed for free.
- Larger networks consume the same amount of power TX a a a a

Electronic control network

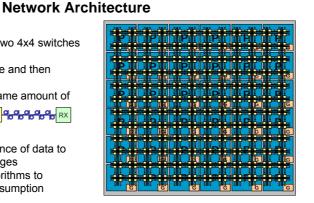
- Manages photonic network Path-setup packets sent in advance of data to reserve path for photonic messages
- Distributed adaptive routing algorithms to minimize latency and power consumption

6x16

Architecture

- 22 nm process technology
- 256 PowerPC-464-like 2-issue
- superscalar cores on a die
- IMB L2 cache per core for a total of
- 256 MB of on-chip cache
- 4GHz core frequency

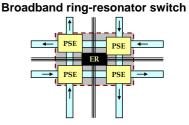
Interconnect Characteristics


4GHz, α = 1	Proposed Optical Network		Electrical baseline
@ 22nm	Setup (16 bits)	Optical part	(32 bits)
Area	5.38mm ²	23.3mm ^{2 *Active layer}	11.67mm ²
		25.5mm ^{2 *Optical layer}	
Power	28.8W	37W	57.6W
Bisection BW	256GB/s	10.24TB/s	512GB/s
Latency *4KB data	60 cycles	103 cycles	1084 cycles
•	60 cycles	,	1084 cycles

For equal power \rightarrow 20x bandwidth improvement → 10x latency improvement

4GHz, α = 1	Proposed Optical Network		Electrical baseline
@ 22nm	Setup (16 bits)	Optical part	(640 bits)
Area	5.38mm ²	23.3mm ^{2 *Active layer}	933.5mm ²
		25.5mm ^{2 *Optical layer}	
Power	28.8W	37W	1152W
Bisection BW	256GB/s	10.24TB/s	10.24TB/s
Latency *4KB data	60 cycles	103 cycles	112 cycles

· Routers: 5 input, 5 output ports (E,W,S,N,Local), 4 virtual channels, 4-entry input buffers


For equal bandwidth \rightarrow 17.5x less power → 173.5x less area

Keren Bergman Luca Carloni

Assaf Shacham **Columbia University** http://lightwave.ee.columbia.edu

Building Blocks

- 4 PSEs grouped with electronic control
- •4 waveguide pairs I/O links
- Electronic router
 - High speed, simple logic for fast arbitration time
- Electric links optimized for low latency Small footprint
 - 70 μm x 70 μm (including spacing) Area < 0.005 mm²
- Nearly no power consumption in OFF state

Traditional electronic on-chip networks: Huge amounts of data are buffered and regenerated at every hop.

The larger the network - more hops, more regenerations, and more power!

Applications

Data Mining

 Mine medical, financial, communication, travel, sensor, scientific, spatial, temporal data

- Find structure, rules, associations, clusters
- Algorithms:
 - -Clustering : K-means, k-medoids, agglomerative, divisive

Speech

Recognition

- -Frequent item set mining
- -Graph mining
- -Association rules mining

Strategic Data Analysis

Stock Market Trends

Supervised Learning

- Learn to predict target from inputs
- Algorithms:
 - Artificial Neural Networks
 - -Decision trees
 - -K-Nearest neighbor
 - -Support vector machines

