## **Digitally Corrected Data Converters**

**Stephen H. Lewis** 

Solid-State Circuits Research Laboratory Department of Electrical and Computer Engineering University of California, Davis CA USA

## **Background-Calibration Techniques**

- Parallelism (Shu et al. JSSC 4/95)
- Skip and fill (Moon et al. TCASII 2/97 & Kwak et al. JSSC 12/97)
- Queueing (Erdoğan et al. JSSC 12/99)
- Embedded dither (Jewett et al. ISSCC 2/97)

### Parallelism (Resistor-String DASC)



- Shu et al., JSSC 4/95
- All DASC outputs available all the time
- Only works for resistor strings

### **Figure of Merit (FOM)**

• 
$$FOM = \frac{P}{f_s 2^{ENOB}}$$
  
• Example:  $FOM = \frac{500 \text{ mW}}{100 \frac{\text{Msample}}{\text{s}} \cdot 2^{11} \frac{\text{steps}}{\text{sample}}} = 2.5 \frac{\text{pJ}}{\text{step}}$ 

• Assume digital calibration circuits are free



- $FOM = \frac{2P}{f_S 2^{ENOB}}$
- Reduce overhead by increasing number of channels
- Dyer et al., JSSC 12/98,  $FOM = \frac{1.5P}{f_S 2^{ENOB}}$

## **Extra Stage**



- Ingino et al., JSSC 12/98
- Extra stg. must have same noise performance as stg. 1
- With scaled stages (Cline et al., JSSC 3/96)  $FOM \approx \frac{1.25P}{f_s 2^{ENOB}}$

### **Parallelism with Nesting**



- Wang et al. JSSC 11/04 and Chiu et al. TCAS 1/04
- Uses V<sub>in</sub> to calibrate
- Slow ADC can have high noise & low power dissipation

• FOM 
$$\approx \frac{1.2P}{f_{s}2^{ENOE}}$$

## **Skip and Fill**



- Moon et al. TCASII 2/97 & Kwak et al. JSSC 12/97
- Interpolation limits bandwidth to  $f_s/3$

• FOM 
$$\approx \frac{1.5P}{f_s 2^{ENOB}}$$



- Erdoğan et al., JSSC 12/99
- $f_{c} > f_{s}$
- Extra SHA increases noise  $\rightarrow$  FOM  $\approx \frac{1.5P}{f_{s}2^{ENOB}}$
- With only 1 SHA (JSSC: Blecker 6/03, Grace 5/05), same *FOM*

![](_page_9_Figure_0.jpeg)

- Jewett et al., ISSCC 2/97
- Power diss. penalty depends on dither amplitude
- If dither amplitude is 10% of FS, FOM  $\approx \frac{1.2P}{f_{s}2^{ENOB}}$

![](_page_10_Figure_0.jpeg)

- Fu et al., JSSC 12/98
- $G_A \cdot G = 1/G_D$
- Calibrates gain mismatch with interleaved channels
- If dither amplitude is 10% of FS,  $FOM \approx \frac{1.2P}{f_s 2^{ENOB}}$

![](_page_11_Figure_0.jpeg)

- Insensitive to offset errors
- Main performance limitations:

DASC nonlinearity  $\rightarrow$  Galton, TCASII 3/00 Interstage gain errors

![](_page_12_Figure_0.jpeg)

- Dither is inside correction range:  $FOM \approx \frac{P}{f_{c}2^{ENOB}}$
- Slow-but-accurate ADC needed to measure dither amplitude

![](_page_13_Figure_0.jpeg)

- Siragusa et al., Electronics Letters 3/00 & JSSC 12/04
- No slow-but-accurate ADC but increases DASC resolution

• FOM 
$$\approx \frac{P}{f_s 2^{ENOB}}$$

![](_page_14_Figure_0.jpeg)

- Li et al. TCASII 9/03
- Low complexity but only calibrates for  $V_{in}$  near  $ADSC_1$  thresholds
- FOM  $\approx \frac{P}{f_s 2^{ENOB}}$
- Fetterman et al., CICC 5/99 (dither without calibration)

![](_page_15_Figure_0.jpeg)

• Ideal jump =  $2V_R$ 

• Measure jump to calibrate gain error digitally Karanicolas et al., JSSC 12/93 (foreground cal.)

![](_page_16_Figure_0.jpeg)

- Murmann et al., JSSC 12/03
- Requires about 1 extra bit of resolution
- Equivalent to adding dither to ADSC and DASC inputs
- Ideally both modes give identical results
- Calibrates by measuring  $\Delta V_{oi}$  statistically

# **Key Points (Murmann)**

• Overhead:

|                                                       |       | Prototype | Post proc.          | Net          |
|-------------------------------------------------------|-------|-----------|---------------------|--------------|
| 1.                                                    | Area  | Same      | $+1.4 \text{ mm}^2$ | +18%         |
|                                                       | Power | —33 mW    | +10 mW              | — <b>7</b> % |
| Therefore, $FOM \approx \frac{(0.93)P}{f_s 2^{ENOB}}$ |       |           |                     |              |

- 2. Test time increases
- Convergence time:
  - 1. Code dependent (see Keane et al., TCASI 1/05)
  - 2. Slow (input varies during calibration)

![](_page_18_Figure_0.jpeg)

- Weight[n + 1] = Weight[n] +  $\mu$ ( $V_{in} + \Delta V_{cal}$ ) ·  $V_{cal}$
- $\bullet$  Steady state SNR  $\propto$  1/ $\mu$ : Need small  $\mu$  (Wang et al., ISCAS 5/05)
- Convergence time  $\propto N \cdot 2^{2N}$

#### **Two-Channel or Split ADC Architecture**

![](_page_19_Figure_1.jpeg)

- Li et al., TCASII 9/03 and JSSC 4/05 McNeill et al., JSSC 12/05
- Reduces V<sub>in</sub> in D<sub>cal</sub>
- Reduces convergence time dramatically
- Requires little extra power dissipation

# **Other Work**

- Any systematic error can be calibrated in principle
- Examples

**Offset (random chopping):** 

van der Ploeg et al. JSSC 12/01 & Jamal JSSC 12/02 Summing node error: Ali et al., TCASII 9/03 Slew rate: Grace et al., JSSC 5/05 Nonlinear gain (piecewise lin.): Yuan et al., CICC 9/05 Memory errors: Keane et al., TCASI 3/06 Incomplete settling (glitch suppression): Iroaga et al., VLSI Symp. 6/06 OFDM-based UWB receivers: Oh et al., TCASI 8/06

• Commercially important when *FOM* is reduced