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Blind Calibration of a Bandpass Sampling
Nonuniformly Interleaved Two-Channel ADC
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Abstract—A method was proposed in [1] to sample directly the
complex envelope of a bandpass signal by using two nonuniformly
interleaved analog-to-digital converters (ADCs). The computation
of the envelope samples requires two digital FIR filters and a
discrete-time demodulator. To mitigate the effect of gain timing
mismatches, we describe a blind calibration technique which
assumes that there exists a frequency band where the envelope sig-
nal has no power, due for example to oversampling. Mismatches
give rise to errors in this band, which are extracted and used
to estimate adaptively the gain and timing skew mismatches.
Computer simulations for an envelope consisting of a sum of
complex exponentials and for a bandlimited white noise envelope
demonstrate the effectiveness of the proposed calibration method.

Keywords—adaptive filtering, bandpass sampling, blind calibra-
tion, direct sampling, software defined radio, stochastic gradient,
time interleaved A/D converter

I. I NTRODUCTION

Due to their lower hardware complexity, direct bandpass
sampling front ends have become attractive for software
defined radio and radar, and for global navigation satellite
system (GNSS) receivers. However, the implementation of
flexible high-resolution bandpass sampling systems presents
some challenges. If a single ADC is used, andB represents
the occupied bandwidth of the signal of interest (which differs
from its maximum frequency), alias-free reconstruction ofthe
bandpass signal is not guaranteed for all sampling frequencies
Ωs above the Nyquist frequency2B [2], [3], [4, Sec. 6.4].
In addition to being greater than2B, Ωs needs to satisfy
conditions which ensure that aliasing does not take place
between the negative and positive frequencies of the bandpass
signal to be sampled. It was shown in [2], that this difficulty
can be overcome by using second-order sampling, i.e. time-
interleaved sampling, where two separate ADCs operating with
a time skew sample the signal with frequencyΩ′

s = Ωs/2. In
this case, except for certain forbidden values of the timing
offset between the two ADCs, the bandpass signal can be
reconstructed from the two time-interleaved sample sequences
for all sampling frequenciesΩs above2B.

Whereas [2] and subsequent works [5], [6] focus on the
reconstruction of the bandpass signal signal itself from its
samples, for modulated signal, it is often of greater interest
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to obtain the sampledI and Q signal components, i.e., the
sampled complex envelope of the signal. A method is described
in [1] to compute the sampled complex envelope of a bandpass
signal directly from the sequences produced by a two-channel
time-interleaved ADC (TIADC) with timing offsetdT ′

s, where
0 < d < 1 and T ′

s = 2π/Ω′
s denotes the sub-ADC sampling

period. No assumption is made about the carrier frequencyΩc,
signal bandwidthB, sampling frequencyΩs and timing offset
d, except that the sampling frequencyΩs should be above
2B and the carrier frequencyΩc > B/2, which ensures that
the signal considered is a bandpass signal. However, certain
timing offests are forbidden, including the offsetd = 1/2
corresponding to uniform interleaving, since this case the
interleaved ADC is functionally equivalent to a single ADC,
to which the limitations noted in [3] are applicable.

The computational technique described in [1] for evaluating
the complex envelope samples from the sub-ADC samples re-
lies on two real digital FIR filter and a digital demodulator.The
filters need to be recomputed if the frequency band of interest
changes, but since the filters are obtained by windowing known
closed form impulse responses, the recomputation is rather
simple, making the proposed technique well suited for software
defined radio or radar receivers. However, the performance
complex envelope computation algorithm is affected by timing
offset mismatches, i.e. differences between the actual offset
and the one used to compute the FIR filters. The source
of this sensitivity is that the model of a bandpass sampling
nonuniformly interleaved ADC involves a2πℓd phase shift,
where if k denotes the Nyquist zone of the carrier frequency
Ωc, ℓ = ⌊k/2⌋. Hence whenℓ is large, small timing offset
mismatches give rise to large phase errors which significantly
affect the proposed envelope computation technique.

Another reason for examining the effect of timing mis-
matches is that since the uniform timing skewd = 1/2
is among the forbidden timing offset values, the sub-ADCs
cannot share the same sample and hold (S/H). The use of
different S/Hs in the two sampling paths makes it difficult to
achieve exactly the desired timing offsetd. It is therefore im-
portant to develop a timing and gain offset calibration scheme
adapted to the bandpass sampling nonuniformly interleaved
ADC architecture considered. Calibration techniques can de
divided in two categories, depending on whether the normal
ADC operation is is suspended during calibration phases.
Foreground calibration techniques interrupt the ADC operation
by using a known test signal and identify mismatches by
using equalizer type of techniques [7], [8]. Background or
blind methods identify mismatches while the ADC is operating
normally. They rely on some a priori signal knowledge, such
as the absence of signal energy in certain frequency bands
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(this can be achieved for example if the signal is oversampled
[9], [10]) or the wide-sense stationarity of the sampled signal
[11]. Foreground methods have the disadvantage of lowering
the ADC throughput, whereas background methods have the
advantage of being able to track continuously ADC parameter
changes, but they require additional digital filtering operations.

Over the last 10 years a number of blind calibration tech-
niques have been proposed for calibrating gain and timing
mismatches [9], [11]–[14] or bandwidth mismatches [10],
[15]–[17] in baseband sampling uniformly interleaved ADCs.
In contrast, little attention has focused on bandpass sam-
pling ADCs, except for [18]–[20] which propose a semi-
blind scheme where an analog test signal is injected in the
signal prior to digitization, and then removed from the TIADC
output. This approach requires oversampling and making sure
that the aliased images of the injected signal do not overlap
the spectrum of the signal to be sampled. More recently, a
blind method described in [21] extends the pseudo-aliasing
calibration approach proposed in [14] to the bandpass case.
However, all the results obtained in the bandpass case thus
far concern uniformly interleaved ADCs where the goal is to
sample the bandpass signal itself instead of its envelope. We
propose here a different blind calibration method tailoredto
the envelope sampling technique of [1] which leverages the
digital filtering operations used to compute the envelope in
order to perform the TIADC calibration. As in [9], [10] it is
assumed that the signal is slightly oversampled, by say 20%.
This creates a frequency band where the complex envelope
does not have any spectral content. Therefore the presence of
energy in this band in the reconstructed envelope indicates
that the TIADC gain and timing skew estimates used in
the reconstruction are incorrect. By implementing a complex
bandpass filter which extracts the signal power in this band,we
construct an error signal whose power is minimized adaptively
to estimate the gain and timing offset mismatches.

The paper is organized as follows. The complex envelope
sampling scheme of [1] is reviewed in Section II. The blind
calibration approach we propose is described in Section III.
Simulation results are presented in section IV for an envelope
formed by the sum of complex tones and for a bandlimited
white noise envelope. It is shown that calibration leads to a
significant improvement in both the SNDR and MSE of the
complex envelope sampling method. Finally, conclusions are
presented in Section V.

II. COMPLEX ENVELOPE SAMPLING

Consider a bandpass signal

xc(t) = ac(t) cos(Ωct) − bc(t) sin(Ωct)

= ℜ[cc(t)e
jΩct] = |cc(t)| cos(Ωct + ∠cc(t)) , (1)

where
cc(t) = ac(t) + jbc(t) (2)

denotes the complex envelope ofxc(t) and the in-phase and
quadrature componentsac(t) and bc(t) are baseband signals
with bandwidthB/2. If the carrier frequencyΩc > B/2 (it is
in general much larger), the Fourier spectrumXc(jΩ) of xc(t)

is contained in two disjoint positive and negative frequency
bands[ΩL,ΩH ] and [−ΩH ,−ΩL] with ΩL = Ωc − B/2 and
ΩH = Ωc + B/2, so that the occupied bandwidth ofxc(t) is
ΩH −ΩL = B. To sample the complex envelope, we consider
the two-channel time-interleaved ADCs shown in Fig. 1.

ADC1

ADC2

xc(t)

x1(n)

x2(n)

nT ′
s

(n − d)T ′
s

Fig. 1. Time-interleaved sampling of bandpass signalxc(t).

T ′
s denotes the sampling period of the sub-ADCs, which

have therefore sampling frequencyΩ′
s = 2π/T ′

s = Ωs/2,
whereΩs denotes the sampling frequency of the overall ADC.
It is assumed thatΩs > 2B, or equivalently Ω′

s > B.
The timing offset between the two ADCs isD = dT ′

s with
0 < d < 1. Ford = 1/2, the combination of the two sub-ADCs
forms a uniform ADC with sampling periodTs = T ′

s/2, but
for d 6= 1/2, the overall ADC has a nonuniform but periodic
sampling pattern. Although the two sub-ADCs are assumed to
be matched, due to manufacturing imperfections, the second
sub-ADC has a relative gaing compared to the first.

Let

ℓ = round
(Ωc

Ω′
s

)

. (3)

so thatΩc belongs to the frequency band[(ℓ − 1/2)Ω′
s, (ℓ +

1/2)Ω′
s]. Since this frequency band corresponds to the location

of the ℓ-th image copy of a sampled baseband signal, it is
referred to here as theℓ-th image band. In the following it
is assumed thatℓ ≥ 1, so that the signalxc(t) is a bandpass
signal. Since the band[(ℓ− 1/2)Ω′

s, (ℓ+1/2)Ω′
s] corresponds

to the 2ℓ-th and 2ℓ + 1-th Nyquist zones of the sub-ADCs,
ℓ can be expressed in terms the indexk of the Nyquist zone
whereΩc is located asℓ = ⌊k/2⌋. If we consider the discrete
modulation frequency

ωb = ΩcT
′

s mod 2π =
(Ωc

Ω′
s

− ℓ
)

2π , (4)

so that−π < ωb ≤ π, and if c(n) = cc(nT ′
s) denotes the

sampled complex envelope, it is shown in [1] that the sampled
sequencesx1(n) and x2(n) produced by the two sub-ADCs
are related toc(n) by the model shown in Fig. 2. In this model,
the frequency response

F (ejω) = ge−jωd (5)

with −π < ω ≤ π represents the relative gain and timing
skew between the two-sub-ADCs, andG(ejω) is a piecewise
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constant phase shift. Forωb > 0, it can be expressed as

G(ejω) =

{

e−j2π(ℓ+1)d −π ≤ ω < −π + ωb

e−j2πℓd −π + ωb ≤ ω < π ,

and forωb < 0, we have

G(ejω) =

{

e−j2πℓd −π ≤ ω ≤ π + ωb

e−j2π(ℓ−1)d π + ωb < ω < π .

Theℜ{.} operation in Fig. 2 takes the real part of a complex
signal. Thus, from a software defined radio perspective,G(ejω)
depends on the carrier frequencyΩc of the signal of interest,
since it depends on its image zone indexℓ, and on its relative
location ωb within this band, butF (ejω) remains the same
since it depends only on the sub-ADCs relative characteristics.

G(ejω) ℜ{·} F (ejω)

ℜ{·}

ejωbn

c(n) x1(n)

x2(n)

Fig. 2. Discrete-time bandpass sampling model

Let

θ =

[

g
d

]

denote the vector formed by the sub-ADC parameters. It was
shown in [1] that the complex envelopec(n) can be evaluated
by passing the sub-ADC sequencesx1(n) andx2(n) through
digital digital filtersH1(e

jω, d) andH2(e
jω,θ) whose outputs

are summed and then digitally demodulated withe−jωbn as
shown in Fig. 3. The filterH1(e

jω, d) depends ond only and
is given by

H1(e
jω, d) = 1 − j cot(2πℓd) (6)

for |ω| ≤ π − |ωb| and

H1(e
jω, d) = 1 − j cot(π(2ℓ + sgn(ωb))d) (7)

for π− |ωb| < |ω| ≤ π. Similarly H2(e
jω, θ) depends on both

g andd and takes the form

H2(e
jω,θ) = j

ejωd

g sin(2πℓd)
(8)

for |ω| ≤ π − |ωb| and

H2(e
jω,θ) = j

ej(ω−πsgn(ω))d

g sin(π(2ℓ + sgn(ωb)))
(9)

for π − |ωb| < |ω| ≤ π. The IIR impulse responses of filters
H1(e

jω, d) andH2(e
jω,θ) are computed in [1] and are given

respectively by

ℜ{h1(n, d)} = δ(n)

ℑ{h1(n, d)} = − cot(π(2ℓ + sgn(ωb))d)δ(n)

(cot(π(2ℓ + sgn(ωb))d) − cot(2πℓd))

×
sin((π − |ωb|)n)

πn
, (10)

and
ℜ{h2(n,θ)} = 0

ℑ{h2(n,θ)} =
sin((π − |ωb|)(n + d))

gπ sin(2πℓd)(n + d)

−
sin((π − |ωb|)(n + d) − πd)

gπ sin(π(2ℓ + sgn(ωb))d)(n + d)
. (11)

H1(e
jω, d)

H2(e
jω,θ)

x1(n)

x2(n)
e−jωbn

c(n)r(n,θ)

Fig. 3. Recovery ofc(n) from x1(n) and x2(n) by filtering and digital
demodulation.

III. B LIND TIADC CALIBRATION METHOD

In practice, clock jitter and semiconductor process imperfec-
tions make it impossible to match exactly the two sub-ADCs
to their design specifications. For a desired sub-ADC timing
skew ofd0, due to circuit imperfections, the actual timing skew
is d and the sub-ADC relative gaing differs from its from its
ideal valueg0 = 1. Typically, the mismatches

γ
△
= g − 1 , δ

△
= d − d0 (12)

are small, say about 1% or less, but they contribute to a
significant loss of ADC resolution. Accordingly, it is desirable
to implement calibration algorithms to estimateg and d. In
the following the estimated parameter vector at a given time
is denoted as

θ̂ =

[

ĝ

d̂

]

,

where ĝ and d̂ denote the gain and timing offset estimates.
Since mismatches are small, it is assumed throughout the
remainder of this paper thatθ, θ̂, and the nominal parameter
vector

θ0 =

[

1
d0

]

are close to each other. The calibration method we consider
will match the gains of the two sub-ADCs, to ensure thatg
is properly compensated, instead of attempting to correct the
mismatch of each channel gain with respect to its nominal
value. This choice of calibration strategy is dictated by our
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decision to adopt a blind calibration approach since, in the
absence of an external reference signal, it is impossible to
detect gain errors which are common to both channels.

Since the exact gaing and timing skewd are unknown,
the estimated valueŝg and d̂ can be substituted for the
exact parameter values in reconstruction network of Fig. 3
used to evaluate the complex envelope samples. However to
avoid updating all the coefficients of filtersH1(e

jω, d̂) and
H2(e

jω, θ̂) each time the parameter vector vectorθ̂ is updated,
we exploit the fact that the estimated mismatches

γ̂ = ĝ − 1 , δ̂ = d̂ − d0

are small by performing first order expansions

H1(e
jω, d̂) = H10(e

jω) + δ̂H11(e
jω) (13)

H2(e
jω, θ̂) = (1 − γ̂)[H20(e

jω) + δ̂H21(e
jω)] (14)

with

H10(e
jω) = H1(e

jω, d0) , H20(e
jω) = H2(e

jω,θ0)

H11(e
jω) =

∂H1

∂d
(ejω, d0) , H21(e

jω) =
∂H2

∂d
(ejω,θ0)

of the frequency responses and impulse responses ofH1 and
H2 in the vicinity of the nominal parameter values. The
impulse responses of gradient filtersH11(e

jω) and H21(e
jω)

are evaluated in Appendix A. The multiplicative term1 − γ̂
in (14) is due to the fact thatH2(e

jω, θ̂) is proportional to
ĝ−1, so that a local expansion in the vicinity ofg0 = 1
results in a1 − γ̂ multiplicative factor. Although first order
terms are sufficient for small to moderate values ofℓ, if
more accurate approximations are needed second order terms
could be retained. The resulting adaptive implementation of
the reconstruction filters is shown in Fig. 4. Note that the four
filters Hij(e

jω) with i = 1, 2 andj = 0, 1 are fixed and only
three taps equal to estimated mismatchesδ̂ and γ̂ need to be
adapted.

Since the estimated parameter vectorθ̂ is used in the recon-
struction network of Fig. 4, the output signalr(n, θ̂) obtained
after summing the outputs of filtersH1(e

jω, d̂) andH2(e
jω, θ̂)

differs from the exact signalr(n,θ) = c(n)ejωbn that would
be obtained for the correct parameter vector. Therefore we
can use differences betweenr(n, θ̂) and the correct signal
r(n,θ) to calibrate the TIADC. The blind calibration scheme
we propose estimatesθ adaptively by extracting fromr(n, θ̂)
an error signale(n, θ̂) whose power provides a measure of
how far the estimated vector̂θ is from the true vectorθ. It is
assumed that the complex envelopecc(t) is oversampled with
oversampling ratio

α =
Ωs − 2B

Ωs

. (15)

In this case the periodic discrete-time Fourier transform
(DTFT) C(ejω) of the sampled envelope sequencec(n) satis-
fies

C(ejω) = 0

over interval[(1−α)π, (1+α)π] and all its2π-shifted copies.
This implies that when the estimated parameter vectorθ̂ coin-
cides with the correct vectorθ, the signalr(n,θ) = c(n)ejωbn

has no frequency content in the bandI = [ωb +(1−α)π, ωb +
(1 + α)π] and its 2π-shifted copies. Consider therefore the
discrete-time bandpass filter

HBP(ejω) =

{

1 ω ∈ I mod (2π)
0 otherwise . (16)

It can be viewed as an ideal lowpass filter for the band
[−απ, απ] modulated byωb + π, so that its IIR impulse
response is given by

hBP (n) = (−ejωb)n sin(απn)

πn

Then if ∗ denotes the convolution operation, let

e(n, θ̂) = hBP (n) ∗ r(n, θ̂) (17)

denote the error signal obtained by extracting fromr(n, θ̂)
its frequency content in the bandI. Since e(n, θ̂) = 0
wheneverθ̂ = θ, the estimation scheme we propose minimizes
adaptively the power

J(θ̂) =
1

2
E[|e(n, θ̂)|2] (18)

of complex signale(n, θ̂). This approach is justified rigorously
in Appendix B by showing that if the complex envelope
random processc(n) is wide-sense stationary (WSS), in the
vicinity of θ J(θ̂) can be approximated by a positive definite
quadratic function of̂γ − γ and δ̂ − δ, providedc(n) satisfies
certain spectral frequency content conditions. This ensures that
by minimizingJ(θ̂) iteratively, starting with the nominal value

θ̂(0) =

[

1
d0

]

, (19)

the iterates will converge to the correct true parameter vector
θ.

If the gradient of functionJ(θ̂) is available, which is
typically not the case since the evaluation of the ensemble
average in (18) requires knowledge of the statistics of the
envelope processc(n), J(θ̂) can be minimized by using a
steepest descent iteration of the form

θ̂(n + 1) = θ̂(n) − µ∇
θ̂
J(θ̂(n)) (20)

whereµ > 0 denotes the iteration step size, and

∇
θ̂
J(θ̂) =

[

∂
∂ĝ

∂

∂d̂

]

J(θ̂) (21)

represents the gradient ofJ(θ̂). In the absence of the gradient
of J(θ̂), we apply astochastic gradient approximation[22]–
[24], where the expectation in (18) is replaced by its instanta-
neous value, which yields the adaptive estimation algorithm

θ̂(n + 1) = θ̂(n) − µℜ{e∗(n, θ̂(n))∇
θ̂
e(n, θ̂(n))} (22)
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H11(e
jω)

ĉ(n)

H10(e
jω)

H20(e
jω)

H21(e
jω)

δ̂

δ̂

HBP(ejω)
e11(n)

HBP(ejω)
e21(n)

HBP(ejω)
e2(n, θ̂)

HBP(ejω)
e(n, θ̂)

r(n, θ̂)

e−jωbn

x1(n)

x2(n)

1 − γ̂

Fig. 4. Adaptive reconstruction filter implementation and error signal computation.

with initial condition (19). Typically the value ofµ used for
this recursion is much smaller than for the steepest descent
algorithm (20), and since the recursion (22) can be interpreted
as computing the average of gradient∇

θ̂
|e2(n, θ̂)|2/2, the

approximation used to go from (20) to (22) just consists in
replacing an ensemble average by a finite time average.

The recursion (22) requires the computation of the gradient
of e(n, θ̂) with respect toθ̂. To perform this evaluation, it is
convenient to decompose the error signal as

e(n, θ̂) = e1(n, d̂) + e2(n, θ̂) (23)

with

e1(n, d̂) = k1(n, d̂) ∗ x1(n)

e2(n, θ̂) = k2(n, θ̂) ∗ x2(n) , (24)

wherek1(n, d̂) and k2(n, θ̂) denote respectively the impulse
responses of filters

K1(e
jω, d̂) = HBP(ejω)H1(e

jω, d̂)

≈ HBP(ejω)[H10(e
jω) + δ̂H11(e

jω)] . (25)

and

K2(e
jω, θ̂) = HBP(ejω)H2(e

jω, θ̂)

≈ (1 − γ̂)HBP(ejω)[H20(e
jω) + δ̂H21(e

jω)] . (26)

By using the first order expansions (25), we find that the error
component signale1(n, d̂) can be represented as as

e1(n, d̂) = e10(n) + e11(n)δ̂ , (27)

wheree1j(n) is the signal obtained by passingx1(n) through
filter HBP(ejω)H1j(e

jω) with j = 0, 1. Similarly, by using
(26), e2(n, θ̂) can be expressed as

e2(n, θ̂) = (1 − γ̂)[e20(n) + e21(n)δ̂] , (28)

wheree2j(n) is the signal obtained by passingx2(n) through
filter HBP(ejω)H2j(e

jω) for j = 0, 1.
Then, by observing that onlye2(n, θ̂) depends on̂g, we find

that
∂e

∂ĝ
(n, θ̂) = −

1

1 − γ̂
e2(n, θ̂) . (29)

Similarly, the derivative ofe(n, θ̂) with respect tod̂ can be
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expressed as

∂e

∂d̂
(n, θ̂) = e11(n) + (1 − γ̂)e21(n) . (30)

The parameter vector estimatêθ(n) is evaluated adaptively by
substituting gradient expressions (29) and (30) inside recursion
(22). Since the gradients require both the evaluation of theerror
e(n, θ̂) and its componentse2(n, θ̂), e11(n) and e21(n), and
since the first-order expansions require the implementation of
fixed filtersHij for i = 1, 2 andj = 0, 1, eight digital filters
are ultimately required to implement the proposed envelope
sampling and calibration algorithm, as shown in Fig. 4. The
ideal impulse responses of filtersHij , i = 1, 2 j = 0, 1 and
HBP are noncausal and IIR, but causal FIR implementations
of these filters can be obtained by windowing and inclusion
of appropriate delays. It is also worth observing that the
implementation of the four copies of bandpass filterHBP used
to generate error componentse2, e11 and e21 and errore is
required only during calibration phases. After convergence, if
the values ofg andd are not expected to change, the estimation
algorithm (20) and associated bandpass filters can be turned
off to save power, until a new calibration update is required.
However, if power consumption is not a significant considera-
tion, it may be beneficial to keep running the recursion (22) in
the background to track drifts in the values ofg andd due to
variations in TIADC operating conditions, such as temperature
changes.

IV. SIMULATIONS

A. Sum of Complex Tones Complex Envelope

To illustrate the proposed TIADC calibration method, we
consider first a bandpass signal withFc = Ωc/(2π) =
5.15GHz, whose continuous-time envelope

cc(t) = 2 cos(400 × 106 × 2πt)

+j[sin(400 × 106 × 2πt) + cos(175 × 106 × 2πt)]

=
3

2
ej400×106

×2πt +
1

2
e−j400×106

×2πt

+
j

2
[ej175×106

×2πt + e−j175×106
×2πt] (31)

contains 4 complex tones and has bandwidthB/(4π) =
400MHz. The sub-ADC sampling frequencyF ′

s = Ω′
s/(2π) =

1GHz is aboveB/(2π), and the oversampling ratioα = 0.2.
Since

Fc = 5F ′

s + 150 ,

we haveℓ = 5 and

ωb =
150

1000
× 2π = 0.3π .

The discrete-time envelope obtained by samplingcc(t) with
sampling periodT ′

s = 1/F ′
s is

c(n) = cc(nT ′

s) =
3

2
ej0.8πn +

1

2
e−j0.8πn

+
j

2
[ej0.35πn + e−j0.35πn] (32)

This signal has four tones located at±0.8π and±0.35π, but
the tone at0.8π has an amplitude three times larger than the
tones at−0.8π and±0.35π. Note that the tone located at0.35π
is inside the frequency band

IT = [0.8π, 1.2π] − 0.6π = [0.2π, 0.6π]

defined in (53), wherec(n) is required to have some en-
ergy to ensure that the proposed calibration method works
satisfactorily. Also, the passband of filterHBP(ejω) is I =
[0.8π, 1.2π] + 0.3π mod (2π) = [−0.9π,−0.5π].

Although the nominal timing offset used in the TIADC
reconstruction network of Fig. 4 isd0 = 0.425, timing and gain
mismatchesδ = d−d0 = −0.25×10−2 andγ = g−1 = 10−2

are present. The two sub-ADC sequences are therefore given
by

x1(n) = ℜ{c(n)ejωbn} + v1(n)

x2(n) = ℜ{(f ∗ c)(n)ejωb(n−d)} + v2(n) , (33)

wheref(n) denotes the impulse response ofF (ejω) and the
zero mean white noisesv1(n) and v2(n) model the effect of
thermal and quantization noises. The sub-ADC SNR is61.8dB.

The reconstruction filtersHij(e
jω) with i = 1, 2 and

j = 0, 1 appearing in Fig. 4 are obtained by windowing the
IIR impulse responses of these filters with a Kaiser window
of length 61 and parameterβ = 6. The magnitude of the
frequency responses of the resulting FIR filters are shown in
Fig. 5. The small notches of these filters (except forH11) at
the frequencyπ−|ωb| = 0.7π are due to phase discontinuities
of the reconstruction filters (except forH11) at this frequency.
Note that since the magnitude of the gradient filtersHi1(e

jω)
with i = 1, 2 is approximately proportional toℓ, for the value
ℓ = 5, the gradient filters have a large magnitude, suggesting
that for large values ofℓ, higher terms should be retained in
expansions (13) and (14) of the reconstruction filters. To ensure
that the transition region of the bandpass filterHBP(ejω) does
not extend outside[−0.9π,−0.5π], we select a valueα = 0.15
(corresponding to a narrower passband of[−0.85π,−0.55π])
in the impulse responsehBP(n) and employ a Kaiser window
of length81 and parameterβ = 8.

For the 4 tones complex envelope considered, the blind
estimation algorithm (22) is applied to a sequence of length
L = 5 × 104 samples. The initial mismatches are selected as
γ̂ = 0 and δ̂ = 0, which corresponds to the selecting the
nominal TIADC parameters. Instead of using the same step
size for both the gain and timing offset mismatches, we select
µγ = 10−3 andµδ = 10−5 for improved speed of convergence
and estimation accurcay. This choice can be interpreted as
replacing the steepest descent algorithm by a quasi-Newton
algorithm. The resulting gain and time-delay mismatches are
shown in Fig. 6 and Fig. 7 respectively. Note that the final
estimated gain mismatch valuêγ(L) = 0.77×10−2 underesti-
mates the gain mismatch by more than 20%, but the estimated
timing offset mismatcĥδ(L) = −0.27× 10−2 is very close to
the exact mismatch valueδ.

To demonstrate the performance improvement of the pro-
posed calibration algorithm, Fig. 8 and Fig. 9 show the power
spectral densities (PSDs) of the reconstructed envelopeĉ(n)
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Fig. 5. Magnitudes of FIR approximation of reconstruction filtersHij with
i = 1, 2 andj = 0, 1 for a Kaiser window of lengthM = 61 and parameter
β = 6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1

2

3

4

5

6

7

8
x 10

−3

# of samples

γ̂

Fig. 6. Gain mismatch estimates for a 4 tone complex input sequence of
length L = 5 × 104 samples, and adaptation step sizesµγ = 10−3 amd
µδ = 10−5.

obtained before and after calibration. Before calibration, the
sampled envelope is computed by using the reconstruction
filters H10(e

jω) and H20(e
jω) computed for the nominal

TIADC values, whereas the calibrated sequenceĉ(n) uses
the last104 estimateŝγ(n) and δ̂(n) produced by the blind
estimation algorithm. Note that as indicated by Fig. 6 and Fig.
7, the blind estimation algorithm converges quickly, so that the
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Fig. 7. Timing offset mismatch estimates for a 4 tone complex inputsequence
of lengthL = 5 × 104 samples, and adaptation step sizesµγ = 10−3 amd
µδ = 10−5.

mismatch estimates obtained during the final104 simulation
samples fluctuate around the final values.
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Fig. 8. PSD of the estimated envelopeĉ(n) before calibration.

The MSE and SFDR before calibration are−17.80dB and
25dB, and−36.51dB and43dB after calibration, respectively.
Thus calibration yields about 18dB in MSE and SFDR im-
provement.

Next, to assess the effect of the image band indexℓ on the
performance of the proposed calibration algorithm, we perform
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Fig. 9. PSD of the estimated envelopeĉ(n) after calibration.

simulations for values of the carrier frequencyFc equal to
2.15, 3.15, 4.15 and 5.15GHz. The complex envelope signal
cc(t) is given by (31) in all cases, and the sub-ADC sampling
frequency F ′

s = 1GHz, so that the values of the carrier
frequency correspond toℓ = 2, 3, 4 and 5, and ωb = 0.3π
in all cases. For these signals, we select a nominal timing
offset value equal tod0 = 1/2 − 3/(8ℓ), which ensuresd0

does not correspond to a forbidden value. The gain and timing
mismatches are stillγ = 10−2 and δ = −0.25 × 10−2. For
these simulation parameters, the MSE of the complex envelope
error before and after calibration and the final estimatesγ̂(L)
and δ̂(L) are shown in Table I. The table indicates that the
performance of the complex envelope sampling scheme de-
grades steadily both before and after calibration asℓ increases,
and the MSE calibration improvement declines slightly from
25dB for ℓ = 2 to 18dB for ℓ = 5. The gain underestimate
increases, but the accuracy of the the timing delay estimate
does not suffer significantly whenℓ increases. Since other
simulations not shown here indicate that gain mismatches have
little effect on the envelope MSE, we conclude that the main
reason for the loss of performance of the proposed calibration
algorithm asℓ increases is not the blind estimation algorithm,
which estimates timing mismatches accurately, but the first-
order approximation (13) and (14) of the reconstruction filters,
which becomes progressively less accurate asℓ increases. Thus
for large ℓ, it may be desirable to include second-order terms
in expansions (13) and (14). The presence of large higher-
order terms is also the cause of the underestimation of the
gain mismatchγ, since the analysis presented in [9, Sec. 4]
for gain estimation of baseband sampling TIADCs shows that
the presence of noise contributes to a negative bias in the gain
estimate. For the case considered here, the higher order terms

neglected in expansions (13) and (14) play the role of noise,
which causes the gain mismatch underestimation.

Carrier Freq. 2.15GHz 3.15Gz 4.15GHz 5.15 GHz
MSE, Before (dB) -25.51 -22.24 -19.76 -17.79
MSE, After (dB) -50.89 -46.01 -40.97 -36.52
γ̂(L)(×10−3) 10 9.7 8.8 7.7
δ̂(L) (×10−3) 2.5 2.6 2.6 2.7

TABLE I. VARIATION OF THE MSE BEFORE AND AFTER CALIBRATION

AND OF THE MISMATCH PARAMETER ACCURACY AS THE IMAGE ZONE

INDEX ℓ INCREASES.

B. Bandlimited White Noise Compex Envelope

To demonstrate that the proposed blind estimation algorithm
works satisfactorily for different types of complex envelope
signals, for the case of a carrier frequencyFc = 5.15GHz,
we consider the case where the complex envelopecc(t) is
a bandlimited white noise signal with bandwidthB/(4π) =
400MHz. The sub-ADC sampling frequency remainsF ′

s =
1GHz, so that the oversampling ratio is againα = 0.2. The
PSD of the true sampled complex envelope is shown in Fig. 10.
The nominal TIADC parametersd0 = 0.425 andg0 = 1, and
mismatchesγ andδ are the same as before. Sinceωb = 0.3π
and ℓ = 5, the reconstruction filtersHij(e

jω), i = 1, 2 and
j = 0, 1 and bandpass filterHBP(ejω) are the same as in the
earlier example.
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Fig. 10. PSD of the actual sampled bandlimited white noise complex
envelope.

The blind estimation algorithm is applied to a data block
of length L = 105 samples with adaptation step sizesµγ =
5×10−4 andµδ = 5×10−6 and zero initial mismatch values.
The resulting estimated mismatches are shown as a function
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of time in Fig. 11 and Fig. 12. The final estimated gain and
timing offset mismatches estimates areγ̂(L) = 0.83 × 10−4

and δ̂(L) = −0.24 × 10−4. As in the case of a sum of
complex tones envelope, the gain mismatch is understimated,
but slightly less so than in the complex tone case, and the
timing offset mismatch is estimated accurately. The MSE of
the complex envelope error is−37.56dB.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

−3

Fig. 11. Gain mismatch estimates for a bandlimited white noise complex
envelope, withL = 105 samples, and adaptation step sizesµγ = 5× 10−4

amdµδ = 5× 10−6.
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Fig. 12. Timing offset mismatch estimates for a bandlimited whitenoise
complex envelope, withL = 105 samples, and adaptation step sizesµγ =
5× 10−4 amdµδ = 5× 10−6.

Finally, the PSD of the complex envelope after calibration
is shown in Fig. 13. The PSD is computed by selecting the
final block of lengthN = 104 samples of the blind calibration
simulation, after the estimation algorithm has converged.
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Fig. 13. PSD of the sampled bandlimited white noise complex envelope after
calibration.

V. CONCLUSIONS

A blind calibration method has been proposed for calibrating
a nonuniformly interleaved ADC used for sampling directly the
complex envelope of a bandpass signal. The blind calibration
method requires that the bandpass signal should be slightly
oversampled, which ensures the presence of a frequency band
over which the sampled complex envelopec(n) has no power.
By extracting the component of the reconstructed envelope
corresponding to this frequency band, an error signal is ob-
tained. This error signal can be minimized adaptively by using
a stochastic gradient approach in order to obtain estimatesof
the TIADC gain and timing offset mismatches.

The adaptive complex envelope reconstruction structure
used in Fig. 4 relies onfixed FIR filters and includes only
three adaptive taps (two equal toδ̂(n) and one equal tôγ(n)).
Numerical simulations for a complex envelope formed by sums
of complex tones, and for a bandlimited white noise complex
envelope show that the calibration scheme can be effective
for low or moderate values of the image indexℓ. For large
values values ofℓ, i.e. for large carrier frequencies, higher
order terms may be needed in the Taylor series approximations
(13) and (14) of the reconstruction filters, which would in-
crease significantly the complexity of the proposed calibration
method. Alternatively, one may consider estimating adaptively
the entire FIR impulse responses of filtersH1 and andH2 to
minimize errore(n). This approach has a high computational
complexity, but it could potentially correct additional sub-ADC
impairments, such as bandwidth mismatches [10], [15]–[17].
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APPENDIX A
IMPULSE RESPONSES OF THEGRADIENT FILTERS

The impulse responses of gradient filtersH11(e
jω) and

H22(e
jω) are obtained by taking the partial derivatives with

respect tod of the impulse responses of the correction filters
h1(n, d) andh2(n, d) given by (10) and (11). This gives

ℜ{h11(n, d)} = ℜ{h21(n, d)} = 0 ,

ℑ{h11(n, d)} = π(2ℓ + sgn(ωb)) csc2(π(2ℓ + sgn(ωb))d)δ(n)

+π[2ℓ csc2(2πℓd) − (2ℓ + sgn(ωb)) csc2(π(2ℓ + sgn(ωb))d)]

×
sin((π − |ωb|)n)

πn
, (34)

and

ℑ{h21(n,θ)} =
1

gπ(n + d)

×
[

(π − |ωb|)
cos((π − |ωb|)(n + d))

sin(2πℓd)

−2πℓ
sin((π − |ωb|)(n + d)) cos(2πℓd)

sin2(2πℓd)

+|ωb|
cos((π − |ωb|)(n + d) − πd)

sin(π(2ℓ + sgn(ωb))d)

+π(2ℓ + sgn(ωb)) sin((π − |ωb|)(n + d) − πd)

×
cos(π(2ℓ + sgn(ωb))d)

sin2(π(2ℓ + sgn(ωb))d)

]

−
1

n + d
ℑ{h2(n,θ)} . (35)

APPENDIX B
QUADRATIC APPROXIMATION OF J(θ̂)

To derive a quadratic approximation ofJ(θ̂), we start by
noting that the model of Fig. 2 implies that the DTFTsX1(e

jω)
and X2(e

jω) of the sub-ADC sequences can be expressed in
term of the DTFTC(ejω) of complex envelopec(n) as
[

X1(e
jω)

F−1(ejω)X2(e
jω)

]

= M(ejω, d)

[

C(ej(ω−ωb))
C∗(ej(ω+ωb))

]

(36)
where

M(ejω, d) =
1

2

[

1 1
G(ejω) G∗(e−jω)

]

. (37)

Accordingly, the DTFT of signalr(n, θ̂) in Fig. 4 can be
expressed as

R(ejω, θ̂) =
[

H1(e
jω, d̂) H2(e

jω, θ̂)
]

[

X1(e
jω)

X2(e
jω)

]

= L(ejω, θ̂)

[

C(ej(ω−ωb))
C∗(ej(ω+ωb))

]

(38)

with

L(ejω, θ̂) = [ 1 0 ]M−1(ejω, d̂)

×

[

1 0

0 g
ĝ
ejω(d̂−d)

]

M(ejω, d) . (39)

By performing a first-order Taylor series expansion of
L(ejω, θ̂) in the vicinity of θ, we find

L(ejω, θ̂) ≈ [ 1 0 ]

+ǫLγ(ejω) + ηLδ(e
jω) , (40)

with
ǫ = γ̂ − γ , η = δ̂ − δ ,

where

Lγ(ejω) = − [ 1 0 ]M−1(ejω, d)

×

[

0 0
0 1

]

M(ejω, d) (41)

and

Lδ(e
jω) = [ 1 0 ]M−1(ejω, d)

×
[

jω

[

0 0
0 1

]

M(ejω, d) −
∂

∂d
M(ejω, d)

]

. (42)

We find

∂

∂d
M(ejω, d) =

1

2

[

0 0
J(ejω)G(ejω) J∗(e−jω)G∗(e−jω)

]

(43)
where

J(ejω)
△
=

∂

∂d
lnG(ejω)

is given by

J(ejω) =

{

−j2π(ℓ + 1) −π ≤ ω < −π + ωb

−j2πℓ −π + ωb ≤ ω < π ,

for ωb > 0 and

J(ejω) =

{

−j2πℓ −π ≤ ω ≤ π + ωb

−j2π(ℓ − 1) π + ωb ≤ ω < π .

for ωb < 0. Then by observing that the bandpass filter
HBP(ejω) has been selected such that

HBP(ejω)C(ej(ω−ωb)) = 0 , (44)

we conclude that the DTFT of error signalE(ejω, θ̂) can be
expressed as

E(ejω, θ̂) = HBP(ejω)R(ejω, θ̂)

≈ [ǫNγ(ejω) + ηNδ(e
jω)]C∗(e−j(ω+ωb)) , (45)

where after some substitutions, we find

Nγ(ejω) = HBP(ejω)Lγ(ejω)

[

0
1

]

= −HBP(ejω) [ 1 0 ]

×M
−1(ejω, d)

[

0
G∗(e−jω)/2

]

=
1

2
HBP(ejω)H1(e

jω, d) , (46)
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and

Nδ(e
jω) = HBP(ejω)Lδ(e

jω)

[

0
1

]

= (jω − J∗(e−jω))HBP(ejω) [ 1 0 ]

×M
−1(ejω, d)

[

0
G∗(e−jω)/2

]

=
1

2
(J∗(e−jω) − jω)HBP(ejω)H1(e

jω, d) . (47)

in expression (45),C∗(e−j(ω+ωb)) represents the Fourier
transform of signal

q(n) = e−jωbnc∗(n) .

To evaluate the power ofe(n, θ̂), we assume that the complex
envelope processc(n) is zero-mean WSS, i.e. that the complex
autocorrelation function

Rc(m) = E[c(n + m)c∗(n)]

depends onm only. The power spectral density (PSD) ofc(n)
is then defined as

Sc(e
jω) =

∞
∑

m=−∞

Rc(m)e−jmω (48)

It is 2π-periodic and since autocorrelationRc(m) satisfies
Rc(m) = R∗

c(−m), it is real and non-negative (but not
necessarily even). Then the autocorrelation of signalq(n) is

Rq(n) = e−jωbmRc(−m)

and its PSD is

Rq(e
jω) = Sc(e

−j(ω+ωb)) .

Expression (45) for the DTFT of error signale(n, θ̂) implies
that it is also WSS with PSD

Se(n, θ̂) =
[

ǫ2|Nγ(ejω)|2 + η2|Nδ(e
jω)|2

]

Sq(e
jω) ,

(49)
where the absence of cross-term is due to the fact that the real
part of purely imaginary termJ∗(e−jω)−jω is zero. By using
this expression inside (18), we find that

J(θ̂) =
1

4π

∫ π

−π

Se(e
jω, θ̂)dω

= Jγǫ2 + Jδη
2 (50)

with

Jγ =
1

4π

∫ π

−π

|Nγ(ejω)|2Sq(e
jω)dω

=
1

16π

∫

Im

|H1(e
jω, d)|2Sc(e

−j(ω+ωb))dω (51)

and

Jδ =
1

4π

∫ π

−π

|Nδ(e
jω)|2Sq(e

jω)dω

=
1

16π

∫

Im

|J∗(e−jω) − jω|2|H1(e
jω, d)|2

×Sc(e
−j(ω+ωb))dω . (52)

In equations (51) and (52),Im = I mod (2π) is defined so
thatIm is a subset of[−π, π]. SinceH1(e

jω, d) is a piecewise
constant and nonzero filter, the expressions (51) and (52) imply
that the coefficientsJγ andJδ are nonzero, so thatJ(θ̂) is a
positive definite quadratic function ofǫ and η in the vicinity
of θ, as long as signalq(n) = ejωbnc∗(n) has some power
in bandIm. Equivalently,c(n) must have some power in the
band

IT = [(1 − α)π, (1 + α)π] − 2ωb mod (2π) . (53)

In this caseJ(θ̂) will be minimized whenǫ = η = 0, or
equivalently when estimateŝγ = γ and δ̂ = δ correspond to
the true mismatch values.

At this point, it is worth noting that the bandIT has width
2απ and is completely contained inside the spectral support
region [−(1−α)π, (1−α)π] of c(n) as long asαπ ≤ |ωb| ≤
(1 − α)π. On the other hand whenωb is located either close
to the center of interval[−π, π] (with |ωb| < απ) or located
close to its edges (with|ωb ± π| < απ, only part of IT is
located within the spectral support region[−(1−α)π, (1−α)π]
of c(n). When ωb is exactly equal to zero or±π, then IT

and the spectral support region[−(1 − α)π, (1 − α)π] are
disjoint, so that the calibration technique proposed here will
not work as described. To deal with such cases, it would
be useful to identify a frequency band other thanI where
r(n,θ) = e−jωbnc(n) is free of energy, and then in the block
diagram of Fig. 4, change the passband of filterHBP to this
zero energy band, so that condition (44) still holds.

At this point it is worth indicating that although it has been
assumed thatc(n) is WSS in order to derive the closed-form
expressions (52) and (53) for the coefficientsJγ andJδ of the
quadratic approximation (51) ofJ(θ̂), this assumption was
needed only for analysis purposes. The conclusion thatJ(θ̂)
is locally positive definite quadratic in the vicinity ofθ holds
in general, even ifc(n) is nonstationary, as long asc(n) has
significant power in the frequency bandIT during segments
of time which are long enough to ensure that the estimation
algorithm (22) converges.
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