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Abstract—A method was proposed in [1] to sample directly the
complex envelope of a bandpass signal by using two nonuniformly
interleaved analog-to-digital converters (ADCs). The computdbn
of the envelope samples requires two digital FIR filters and a
discrete-time demodulator. To mitigate the effect of gain timing
mismatches, we describe a blind calibration technique which
assumes that there exists a frequency band where the envelopg-s
nal has no power, due for example to oversampling. Mismatches
give rise to errors in this band, which are extracted and used
to estimate adaptively the gain and timing skew mismatches.
Computer simulations for an envelope consisting of a sum of
complex exponentials and for a bandlimited white noise envelope
demonstrate the effectiveness of the proposed calibration msad.

Keywords—adaptive filtering, bandpass sampling, blind calibra-
tion, direct sampling, software defined radio, stochastic gradient,
time interleaved A/D converter

I. INTRODUCTION

to obtain the sampled and @ signal components, i.e., the
sampled complex envelope of the signal. A method is destribe
in [1] to compute the sampled complex envelope of a bandpass
signal directly from the sequences produced by a two-cHanne
time-interleaved ADC (TIADC) with timing offset7”, where
0<d<1andT] =27/, denotes the sub-ADC sampling
period. No assumption is made about the carrier frequéhgy
signal bandwidthB, sampling frequenc{2, and timing offset
d, except that the sampling frequen€y, should be above
2B and the carrier frequencf2. > B/2, which ensures that
the signal considered is a bandpass signal. However, gertai
timing offests are forbidden, including the offsét= 1/2
corresponding to uniform interleaving, since this case the
interleaved ADC is functionally equivalent to a single ADC,
to which the limitations noted in [3] are applicable.

The computational technique described in [1] for evaluatin
the complex envelope samples from the sub-ADC samples re-
lies on two real digital FIR filter and a digital demodulat®he

Due to their lower hardware complexity, direct bandpassfilters need to be recomputed if the frequency band of interes
sampling front ends have become attractive for softwaréhanges, butsince the filters are obtained by windowing know
defined radio and radar, and for global navigation satelliteclosed form impulse responses, the recomputation is rather
system (GNSS) receivers. However, the implementation ofimple, making the proposed technique well suited for safew
flexible high-resolution bandpass sampling systems ptesendefmed radio or radar receivers. However, the performance

some challenges. If a single ADC is used, aBdepresents
the occupied bandwidth of the signal of interest (whicheaf
from its maximum frequency), alias-free reconstructiorttod
bandpass signal is not guaranteed for all sampling freqesnc
Qs above the Nyquist frequenc®B [2], [3], [4, Sec. 6.4].
In addition to being greater thaRB, 2, needs to satisfy

complex envelope computation algorithm is affected byrgni
offset mismatches, i.e. differences between the actuakbff
and the one used to compute the FIR filters. The source
of this sensitivity is that the model of a bandpass sampling
nonuniformly interleaved ADC involves ar/d phase shift,
where if £ denotes the Nyquist zone of the carrier frequency

conditions which ensure that aliasing does not take plac&e. ¢ = [k/2]. Hence when/ is large, small timing offset
between the negative and positive frequencies of the basdpaMismatches give rise to large phase errors which signifigant
signal to be sampled. It was shown in [2], that this difficulty affect the proposed envelope computation technique.
can be overcome by using second-order sampling, i.e. time- Another reason for examining the effect of timing mis-

interleaved sampling, where two separate ADCs operatitiy wi
a time skew sample the signal with frequeriey = Q;/2. In

matches is that since the uniform timing skeiv= 1/2
is among the forbidden timing offset values, the sub-ADCs

this case, except for certain forbidden values of the timingt@nnot share the same sample and hold (S/H). The use of

reconstructed from the two time-interleaved sample secgen
for all sampling frequencie®, above2B.

achieve exactly the desired timing offsétlt is therefore im-
portant to develop a timing and gain offset calibration scbe

Whereas [2] and subsequent works [5], [6] focus on theadapted to the bandpass sampling nonuniformly interleaved
reconstruction of the bandpass signal signal itself from it ADC architecture considered. Calibration techniques can d

samples, for modulated signal, it is often of greater irgere
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divided in two categories, depending on whether the normal
ADC operation is is suspended during calibration phases.
Foreground calibration techniques interrupt the ADC oplera

by using a known test signal and identify mismatches by
using equalizer type of techniques [7], [8]. Background or
blind methods identify mismatches while the ADC is opegtin
normally. They rely on some a priori signal knowledge, such
as the absence of signal energy in certain frequency bands



(this can be achieved for example if the signal is oversachpleis contained in two disjoint positive and negative frequenc
[9], [10]) or the wide-sense stationarity of the samplechalg bands[2, Qy] and [-Q g, —Q1] with @, = Q. — B/2 and
[11]. Foreground methods have the disadvantage of lowerin§@; = Q. + B/2, so that the occupied bandwidth of(t) is

the ADC throughput, whereas background methods have th@; — Q; = B. To sample the complex envelope, we consider
advantage of being able to track continuously ADC parametethe two-channel time-interleaved ADCs shown in Fig. 1.
changes, but they require additional digital filtering aiems.

Over the last 10 years a number of blind calibration tech- nT’
nigues have been proposed for calibrating gain and timing *S
mismatch_es [9], [11]-[14] or banQWidth .mismatches [10], z1(n)
[15]-[17] in baseband sampling uniformly interleaved ADCs > ADC; |—»
In contrast, little attention has focused on bandpass sam-
pling ADCs, except for [18]-[20] which propose a semi- zc(t) DT
blind scheme where an analog test signal is injected in the — (n — )T
signal prior to digitization, and then removed from the TI&D v 2a(n)
output. This approach requires oversampling and making sur ~ ADC 2
that the aliased images of the injected signal do not overlap - 2

the spectrum of the signal to be sampled. More recently, a
blind method described in [21] extends the pseudo-aliasing o _ _
calibration approach proposed in [14] to the bandpass cas&9- 1. Time-interleaved sampling of bandpass signalt).
However, all the results obtained in the bandpass case thus
far concern uniformly interleaved ADCs where the goal is to . . .
sample the bandpass signal itself instead of its enveloge. : dﬁnotfes the sarlnpllnfg period of the SUb,'ADCS’ which
propose here a different blind calibration method tailoted 'c;]ve thr; ore sarr?pmg ff‘*“?”‘f?’s = 27}/% = QSII/?A’DC
the envelope sampling technique of [1] which leverages th t eresss encc)jtet?]tg samp2|£)g requeqcylo 'EI ch/>vera B :
digital filtering operations used to compute the envelope i hIS gs_sumeﬁ % s > o or equiva ei,ng yiis > "
order to perform the TIADC calibration. As in [9], [10] it is € timing ofiset between the t.WO.ADCS = dT, wit
assumed that the signal is slightly oversampled, by say ZOfVO. <d<l I_:ord =1/2, the combln.atlon Of the two S,Ub'ADCS
This creates a frequency band where the complex envelo rms a uniform ADC with sampling periodl, = T /2, but

does not have any spectral content. Therefore the presdnce arrr;i ﬁénl/ QéItig?nO\strﬁcl)luAECt:hge:\?vc?snuoqugggn;rzuggsﬂgg:jc to
energy in this band in the reconstructed envelope indicate piing p X 9

that the TIADC gain and timing skew estimates used in e matched, due to manufacturing imperfections, the second
the reconstruction are incorrect. By implementing a comple sub-ADC has a relative gaip compared to the first.

bandpass filter which extracts the signal power in this barmd, Let Q.
construct an error signal whose power is minimized adalgtive 0= round(ﬁ) . (3)
to estimate the gain and timing offset mismatches. s

The paper is organized as follows. The complex envelopgo that(2. belongs to the frequency bantt — 1/2)2, (¢ +
sampling scheme of [1] is reviewed in Section II. The blind 1 /2)Q’]. Since this frequency band corresponds to the location
calibration approach we propose is described in Sectian lllof the ¢-th image copy of a sampled baseband signal, it is
Simulation results are presented in section IV for an empelo referred to here as théth image band. In the following it
formed by the sum of complex tones and for a bandlimiteds assumed that > 1, so that the signat.(t) is a bandpass
white noise envelope. It is shown that calibration leads to &ignal. Since the band¢ — 1/2)2., (¢4 1/2).] corresponds
significant improvement in both the SNDR and MSE of theto the 2¢-th and 2¢ + 1-th Nyquist zones of the sub-ADCs,
complex envelope sampling method. Finally, conclusiores ar¢ can be expressed in terms the indexf the Nyquist zone
presented in Section V. where(), is located ag = |k/2]. If we consider the discrete

modulation frequency

Il. COMPLEX ENVELOPE SAMPLING

Q.
Consider a bandpass signal wy = QT mod 27 = (* - 5) 2m, 4)

€

ze(t) = ac(t)cos(dt) — be(t) sin(€2et) so that—m < w;, < 7, and if ¢(n) = c.(nT”) denotes the
Rce(t)e? ] = |ca(t)] cos(Qet + Zeo(t)), (1)  sampled complex envelope, it is shown in [1] that the sampled

sequences:; (n) and xz(n) produced by the two sub-ADCs

where . are related te(n) by the model shown in Fig. 2. In this model,
ce(t) = ac(t) + jbe(t) (2)  the frequency response
denotes the complex envelope ©f(¢) and the in-phase and F(e?) = ge—iwd (5)

quadrature components.(t) and b.(t) are baseband signals
with bandwidthB /2. If the carrier frequency2. > B/2 (itis ~ with —7 < w < 7 represents the relative gain and timing
in general much larger), the Fourier spectriin(j2) of z.(t)  skew between the two-sub-ADCs, atitie’*) is a piecewise



constant phase shift. Far, > 0, it can be expressed as

_ e—i2r(t4l)d o < _
G(e) = —jomed WS T
e’ —7T+w, <w< T,
and forw, < 0, we have
Gy ={ i mswsTtw,
e—i2m(t=1d o 4 wp <w< .

The R{.} operation in Fig. 2 takes the real part of a complex

signal. Thus, from a software defined radio perspecti@/“)

depends on the carrier frequengy. of the signal of interest,
since it depends on its image zone indexand on its relative
location w;, within this band, butF(e?“) remains the same
since it depends only on the sub-ADCs relative charactesist

ejwbn
c(n) x1(n)
A.é - R} -
. A z2(n)
G(e??) = R{} [~ F(e7) —>
Fig. 2. Discrete-time bandpass sampling model
Let

(3]

respectively by

§R{hl (n7 d)} =
%{hl (nv d)} =

d(n)

— cot(m(2¢ + sgn(wp))d)d(n)

(co.t(w(% + sgn(wp))d) — cot(2mld))
X81n((7r 7:n|wb|)n) ’ (10)

and

R{ha(n,0)} =0

sin((m — |wp|)(n + d))
gmsin(2mld)(n + d)
~_sin((m — |wp[)(n + d) — 7d)
grmsin(m(2¢ 4+ sgnwy))d)(n +d)

S{ha(n, 0)} =

(11)
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Fig. 3. Recovery ofc(n) from z1(n) and z2(n) by filtering and digital
demodulation.

IIl. BLIND TIADC CALIBRATION METHOD

In practice, clock jitter and semiconductor process imperf
tions make it impossible to match exactly the two sub-ADCs

denote the vector formed by the sub-ADC parameters. It wag, their design specifications. For a desired sub-ADC timing

shown in [1] that the complex envelopén) can be evaluated
by passing the sub-ADC sequencegn) andz,(n) through
digital digital filters H (e/*, d) and Hz(e’*, ) whose outputs
are summed and then digitally demodulated witt¥“»" as
shown in Fig. 3. The filtetd, (¢’“, d) depends onl only and
is given by

Hy(e’,d) =1 — j cot(2mld) (6)
for Jw| <7 — |w,| and
Hy(e7,d) =1 — jcot(m(20 4 sgn(wy))d) (7)

for 7 — wp| < |w| < . Similarly H2(e’*, 8) depends on both
g andd and takes the form
ejwd

Hy(e%,0) = j—————
2(e™,9) ]gsin(27r€d)

(8)
for |w| <7 — |w| and
e (w—msgn(w))d

jg sin(m(2¢ + sgn(wyp)))

Hy(e’*,0) = (9)

skew ofdy, due to circuit imperfections, the actual timing skew
is d and the sub-ADC relative gain differs from its from its
ideal valuegy = 1. Typically, the mismatches

yEg-1, 62d—d

are small, say about 1% or less, but they contribute to a
significant loss of ADC resolution. Accordingly, it is desile
to implement calibration algorithms to estimageand d. In
the following the estimated parameter vector at a given time
is denoted as A

3 g

o=|7]

where g and d denote the gain and timing offset estimates.
Since mismatches are small, it is assumed throughout the
remainder of this paper th#, 6, and the nominal parameter

vector
1
00 = |: dO :|

are close to each other. The calibration method we consider
will match the gains of the two sub-ADCs, to ensure that
is properly compensated, instead of attempting to corieet t

(12)

for 7 — |wy| < |w| < 7. The IR impulse responses of filters mismatch of each channel gain with respect to its nominal
Hy(e’¥,d) and Hy(e?%, 0) are computed in [1] and are given value. This choice of calibration strategy is dictated by ou



decision to adopt a blind calibration approach since, in theover interval[(1 —a)m, (14 «)7] and all its27-shifted copies.

absence of an external reference signal, it is impossible t@his implies that when the estimated parameter vegtooin-

detect gain errors which are common to both channels. cides with the correct vectdt, the signalr(n, 8) = c(n)ei“"
Since the exact gaig and timing skewd are unknown, has no frequency content in the bahek [w, + (1 —a)m, wp +

the estimated valueg and d can be substituted for the (1 + a)x] and its 2w-shifted copies. Consider therefore the

exact parameter values in reconstruction network of Fig. 3liscrete-time bandpass filter

used to evaluate the complex envelope samples. However to

avoid updating all the coefficients of filter; (e/~,d) and Hyp(e/*) = { (1) we Ith mod (2r) (16)
H,(e/*, 6) each time the parameter vector veofois updated, otherwise .
we exploit the fact that the estimated mismatches It can be viewed as an ideal lowpass filter for the band

[-am, ar] modulated byw, + 7, so that its IR impulse

Yy=g-1, d=d—do response is given by

are small by performing first order expansions

. } . _ hp(n) = (_ejwb)nM
H1(€Jw7d) :Hlo(ejw)+5H11(6jw) (13) ™
Hz(ejw’é) — (1= 4)[Hao () + 5H21(ej”)] (14) Then if « denotes th(? convolution operainon, let
with e(n,0) = hgp(n) xr(n,0) 17)
Hio(e') = Hi(¢7,do) , Hao(e) = Ha(e'*, 8) denote the error signal obtained by extracting [r@(m,é)
‘ OH, . ‘ OH, . its frequency content in the band. Since e(n,0) = 0
Hy(e™) = —=(e",do) , Han(e") = —-=(e’, 60) wheneve® = 0, the estimation scheme we propose minimizes
) adaptively the power

of th_e freque_n(_:y_ responses and_ impulse responsé$, cdind )
HQ in the vicinity of the .noml_nal paragweter valueszu The J(0) = = Ele(n, )2 (18)

impulse responses of gradient filtefg ; (/) and Ha (e/%) 2

are evaluated in Appendix A. The multiplicative term- 5 of complex signak(n, 6). This approach is justified rigorously

ip_§14) is due to the fact tthQ(gﬂw,O) iS. pr(_)portional o, Appendix B by showing that if the complex envelope
g~ so that a local expansion in the vicinity @b = 1 on46m process(n) is wide-sense stationary (WSS), in the
results in al — 4 multiplicative factor. Although first order . .~ A ; G
terms are sufficient for small to moderate values (fif vicinity pf 4 J(_G) can be approximated b_y a positive _de_f|n|te
iflyadratic function ofy —~ andé — 4, providedc(n) satisfies

more accurate approximations are needed second order ter . | diti hi th
could be retained. The resulting adaptive implementatibn oC€Main spectral frequency content conditions. This exsstirat

the reconstruction filters is shown in Fig. 4. Note that therfo Y minimizing J(6) iteratively, starting with the nominal value

filters H,;(e?*) with i = 1, 2 andj = 0, 1 are fixed and only ) 1
three taps equal to estimated mismatchemd4 need to be 0(0) = { do } ; (19)
adapted.

) the iterates will converge to the correct true parametetorec
Since the estimated parameter vedds used in the recon- 4. R

struction network of Fig. 4, the output signain, @) obtained If the gradient of functionJ(0) is available, which is
after summing the outputs of fiIteHl(ej‘ﬂo?) anng(ej“,é) typically not the case since the evaluation of the ensemble
differs from the exact signat(n,8) = c(n)e’**" that would average in (18) requires knowledge of the statistics of the
be obtained for the correct parameter vector. Therefore wenvelope process(n), .JJ(8) can be minimized by using a
can use differences betweetin, ) and the correct signal steepest descent iteration of the form
r(n, 0) to calibrate the TIADC. The blind calibration scheme . . .
we propose estimates adaptively by extracting from(n, 9) O(n+1) =6(n) — uVyJ(6(n)) (20)
an error signale(n, @) whose power provides a measure of \where,, > 0 denotes the iteration step size, and
how far the estimated vectdr is from the true vecto#. It is

. . 9
assumed that the complex envelapét) is oversampled with - BH N
oversampling ratio Vg J(0) = aj J(0) (21)
ad
Q, —2B .
a="q0 (15) represents the gradient df ). In the absence of the gradient

. o i ) of J (é), we apply astochastic gradient approximatiof22]—
In this cas% the periodic discrete-time Fourier transform[24], where the expectation in (18) is replaced by its intan
(DTFT) C(e?*) of the sampled envelope sequente) satis-  neous value, which yields the adaptive estimation algarith

fies A X A A A
C(e’) =0 O(n+1) = 0(n) — pR{e*(n,6(n))Vge(n,0(n))}  (22)
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Fig. 4. Adaptive reconstruction filter implementation andessignal computation.

with initial condition (19). Typically the value ofi used for and

this recursion is much smaller than for the steepest descent . _ o

algorithm (20), and since the recursion (22) can be intéegre K>(e’%,0) = Hpp(e’“)Ha (e’ 0)

as computing the average of gradieWiy|e?(n,6)|?/2, the ~ (1 —4)Hgp(e’)[Hao(e’) 4 6 Ha1 ()] . (26)

approximation used to go from (20) to (22) just consists in

replacing an ensemble average by a finite time average. By using the first order expansions (25), we find that the error
The recursion (22) requires the computation of the gradiengomponent signat; (n, d) can be represented as as

of e(n, §) with respect tod. To perform this evaluation, it is . .

convenient to decompose the error signal as e1(n,d) = exo(n) +en(n)d, 27)

wheree,;(n) is the signal obtained by passing(n) through

e(n,0) = e1(n,d) + ea(n, 0) (23)  filter HBP(qu)Hlj(ejw) with j = 0, 1. Similarly, by using
with (26), e2(n, @) can be expressed as
R R en,é:l—ﬁe n) + e21(n)d], (28)
er(nd) = ki(n,d)ai(n) 2(,6) = (L= Dleal) + en()3]
ea(n,0) = ko(n,0)xxa(n), (24) whereey;(n) is the signal obtained by passing(n) through

filter Hpp(e/*)Hy;(e*) for j =0, 1.

where ky(n,d) and k;(n,6) denote respectively the impulse th;—then’ by observing that only;(n, 6) depends og, we find

responses of filters de
99

- 1

. R ) ) R (nae) = _1 ~
Ki1(e7,d) = Hgp(e/*)H1 (%, d) -
~ Hpp(e’)[Hio(e’) 4+ 6Hy1(e’¥)].  (25)  Similarly, the derivative ofe(n,8) with respect tod can be

ea(n, é) . (29)




expressed as This signal has four tones located -20.87 and 4+-0.357, but

de R the tone a).87 has an amplitude three times larger than the
(n,0) = e11(n) + (1 —A)ear(n) . (30) tones at-0.87 and+0.357. Note that the tone located @857
od is inside the frequency band
The parameter vector estimai¢n) is evaluated adaptively by It = [0.87,1.27] — 0.67 = [0.27,0.67]

substituting gradient expressions (29) and (30) insidarségn

(22). Since the gradients require both the evaluation oétner ~ defined in (53), wherez(n) is required to have some en-
e(n,0) and its components,(n, 8), e;;(n) andes;(n), and ~ €rgy to ensure that the proposed ca_hbratlon vme.thod works
since the first-order expansions require the implementatio ~ satisfactorily. Also, the passband of filtéfp(e’“) is I =

fixed filters H;; for i = 1, 2 andj = 0, 1, eight digital filtters ~ [0-87,1.27] + 0.37 mod (27) = [-0.97, —0.57].

are ultimately required to implement the proposed envelope Although the nominal timing offset used in the TIADC
sampling and calibration algorithm, as shown in Fig. 4. Thereconstruction network of Fig. 4 i = 0.425, timing and gain
ideal impulse responses of filtef;;, i = 1,2 j = 0, 1 and  Mismatches$ = d—dy = —0.25x1072 andy = g—-1=10"%
Hpgp are noncausal and IIR, but causal FIR implementationgre present. The two sub-ADC sequences are therefore given
of these filters can be obtained by windowing and inclusiorPy

of appropriate delays. It is also worth observing that the _ jwen
implementation of the four copies of bandpass filtgsp used w1 (n) = %{?in():_d) b+ v(n)
to generate error components, e1; ande»; and errore is za(n) = R{(f * c)(n)e’* }+v2(n), (33)

required only during calibration phases. After converg_ﬁn't: _where f(n) denotes the impulse response /6fe’*) and the
the values of; andd are not expected to change, the estimation,

X N . ro mean white noises; (n) andvo(n) model the effect of
algorithm (20) and associated bandpass filters can be t.umetFTermal and quantization Elo)ises. Th(e gub-ADC SNRLisdB.
off to save power, until a new calibration update is required The reconstruction filtersHy,; (¢’) with i = 1,2 and
However, if power consumption is not a significant considera ; f i ; i
ton, it may be beneficial 0 keep running the recursion (22) 1 1 oo crind In Fig. 4 are obtained by windowing the
the background to track drifts in the values pfindd due to

o . : o of length 61 and paramete = 6. The magnitude of the
variations in TIADC operating conditions, such as tempe&t  feqiency responses of the resulting FIR filters are shown in

changes. Fig. 5. The small notches of these filters (except fbr) at
the frequencyr — |w,| = 0.77 are due to phase discontinuities
IV.  SIMULATIONS of the reconstruction filters (except féf,,) at this frequency.
A. Sum Of Comp'ex Tones Comp|ex Enve|0pe Note that Since the magnitude Of the gradient f||tH’§(er)

with ¢ = 1, 2 is approximately proportional té, for the value
We, — 5, the gradient filters have a large magnitude, suggesting

that for large values of, higher terms should be retained in

expansions (13) and (14) of the reconstruction filters. Tues
ce(t) = 2cos(400 x 10° x 27t) that the transition region of the bandpass filt&p (/) does

o 6 ‘ 6 not extend outsidg-0.97, —0.57], we select a value = 0.15
+i[sin(400 X 107 x 2mt) + cos(175 x 107 x 2rt)] (corresponding to a narrower passband[-66.85w, —0.557])

To illustrate the proposed TIADC calibration method,
consider first a bandpass signal with. = Q./(27) =
5.15GHz, whose continuous-time envelope

= §6.7400Xloax27ft 4 16—‘7‘400X106“ﬂ in the impulse responskesp(n) and employ a Kaiser window
2 2 of length81 and parametef = 8.
+Z[6j175x106x27rt+67j175x10“x27rt] (31) For the 4 tones complex envelope considered, the blind
2 estimation algorithm (22) is applied to a sequence of length
contains 4 complex tones and has bandwidiB/(47) = L =5x10% ~samples. The initial mismatches are selected as
400MHz. The sub-ADC sampling frequendy, = Q./(2r) = 4 = 0 andé = 0, which corresponds to the selecting the
1GHz is aboveB/(27), and the oversampling ratia = 0.2.  nominal TIADC parameters. Instead of using the same step
Since size for both the gain and timing offset mismatches, we selec
F.=5F! 4150, wy = 1073 andus = 10> for improved speed of convergence
) and estimation accurcay. This choice can be interpreted as
we havel = 5 and replacing the steepest descent algorithm by a quasi-Newton
150 algorithm. The resulting gain and time-delay mismatches ar
“b = 1000 * 2m = 0.3 shown in Fig. 6 and Fig. 7 respectively. Note that the final

estimated gain mismatch valgéL) = 0.77 x 10~2 underesti-

The discrete-time envelope obtained by samplingf) with  ates the gain mismatch by more than 20%, but the estimated

sampling periodl”, = 1/F" is

timing offset mismatch(L) = —0.27 x 10~2 is very close to
B N3 josen . L —josmn the exact mismatch valug
c(n) = ce(nTy) = 5¢ T3¢ To demonstrate the performance improvement of the pro-
j posed calibration algorithm, Fig. 8 and Fig. 9 show the power

+§[€j 039 4 ¢TI0 (32)  gpectral densities (PSDs) of the reconstructed envel¢pe
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Fig. 8. PSD of the estimated envelopg@:) before calibration.
obtained before and after calibration. Before calibratitre
sampled envelope is computed by using the reconstruction The MSE and SFDR before calibration ard7.80dB and
filters Hyo(e?*) and Hyo(e’*) computed for the nominal 25dB, and—36.51dB and43dB after calibration, respectively.
TIADC values, whereas the calibrated sequei¢e) uses Thus calibration yields about 18dB in MSE and SFDR im-
the last10* estimatesy(n) and 6(n) produced by the blind provement.
estimation algorithm. Note that as indicated by Fig. 6 argl Fi  Next, to assess the effect of the image band inflex the
7, the blind estimation algorithm converges quickly, sctha  performance of the proposed calibration algorithm, we quenf
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simulations for values of the carrier frequendy. equal to
2.15, 3.15, 4.15 and 5.15GHz. The complex envelope signal

neglected in expansions (13) and (14) play the role of noise,
which causes the gain mismatch underestimation.

Carrier Freq. 2.15GHz | 3.15Gz | 4.15GHz | 5.15 GHz
MSE, Before (dB) | -25.51 | -22.24 | -19.76 -17.79
MSE, After (dB) -50.89 | -46.01 | -40.97 -36.52

(L)(x1079) 10 9.7 8.8 7.7
5(L) (x1073) 25 2.6 2.6 27

TABLE I. VARIATION OF THE MSE BEFORE AND AFTER CALIBRATION
AND OF THE MISMATCH PARAMETER ACCURACY AS THE IMAGE ZONE
INDEX £ INCREASES

B. Bandlimited White Noise Compex Envelope

To demonstrate that the proposed blind estimation algorith
works satisfactorily for different types of complex enveo
signals, for the case of a carrier frequenty = 5.15GHz,
we consider the case where the complex envelage) is
a bandlimited white noise signal with bandwid/ (4)
400MHz. The sub-ADC sampling frequency remaifg =
1GHz, so that the oversampling ratio is again= 0.2. The
PSD of the true sampled complex envelope is shown in Fig. 10.
The nominal TIADC parameterg, = 0.425 and gy = 1, and
mismatchesy and ¢ are the same as before. Sincg= 0.37
and ¢ = 5, the reconstruction filterdZ;;(e?*), i = 1, 2 and
j =0, 1 and bandpass filtefgp (/) are the same as in the
earlier example.

c.(t) is given by (31) in all cases, and the sub-ADC sampling

frequency F, = 1GHz, so that the values of the carrier
frequency correspond té = 2, 3, 4 and 5, andw;, = 0.37

in all cases. For these signals, we select a nominal timing

offset value equal tal, = 1/2 — 3/(8¢), which ensuresi,

does not correspond to a forbidden value. The gain and timing

mismatches are stiy = 1072 and§ = —0.25 x 10~2. For

these simulation parameters, the MSE of the complex engelop

error before and after calibration and the final estimates)

and §(L) are shown in Table I. The table indicates that the
performance of the complex envelope sampling scheme de

grades steadily both before and after calibratiod agreases,

and the MSE calibration improvement declines slightly from

25dB for ¢ = 2 to 18dB for ¢ = 5. The gain underestimate

increases, but the accuracy of the the timing delay estimate

does not suffer significantly whe#h increases. Since other
simulations not shown here indicate that gain mismatches ha

little effect on the envelope MSE, we conclude that the main

reason for the loss of performance of the proposed caldoati
algorithm as/ increases is not the blind estimation algorithm,

which estimates timing mismatches accurately, but the- first

order approximation (13) and (14) of the reconstructiomfdt
which becomes progressively less accuratéiasreases. Thus

for large ¢, it may be desirable to include second-order termsrig. 10.
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PSD of the actual sampled bandlimited white noise cempl

in expansions (13) and (14). The presence of large highernvelope.

order terms is also the cause of the underestimation of the

gain mismatchy, since the analysis presented in [9, Sec. 4] The blind estimation algorithm is applied to a data block
for gain estimation of baseband sampling TIADCs shows thabf length L = 105 samples with adaptation step sizes =
the presence of noise contributes to a negative bias in time ga5 x 10~* and s = 5 x 1075 and zero initial mismatch values.

estimate. For the case considered here, the higher ordas ter

The resulting estimated mismatches are shown as a function



of time in Fig. 11 and Fig. 12. The final estimated gain and

timing offset mismatches estimates a&€lL) = 0.83 x 10~*

and (L) = —0.24 x 107%. As in the case of a sum of

complex tones envelope, the gain mismatch is understimated
but slightly less so than in the complex tone case, and the
timing offset mismatch is estimated accurately. The MSE of

the complex envelope error is37.56dB.

x10°°
9 T

Fig. 11. Gain mismatch estimates for a bandlimited white noisaptex
envelope, withZ, = 10° samples, and adaptation step sizgs= 5 x 10~
amdpus =5 x 1076,

Fig. 12. Timing offset mismatch estimates for a bandlimited whitése
complex envelope, witll, = 10° samples, and adaptation step sizes =
5x10~% amdus = 5 x 10~6.

PSD of é¢(n) (dB)

-1001

-110

-120 '

Fig. 13. PSD of the sampled bandlimited white noise complexlepeeafter
calibration.

V. CONCLUSIONS

A blind calibration method has been proposed for calibtatin
a nonuniformly interleaved ADC used for sampling directig t
complex envelope of a bandpass signal. The blind calibratio
method requires that the bandpass signal should be slightly
oversampled, which ensures the presence of a frequency band
over which the sampled complex envelogie) has no power.
By extracting the component of the reconstructed envelope
corresponding to this frequency band, an error signal is ob-
tained. This error signal can be minimized adaptively bygsi
a stochastic gradient approach in order to obtain estinaftes
the TIADC gain and timing offset mismatches.

The adaptive complex envelope reconstruction structure
used in Fig. 4 relies oriixed FIR filters and includes only
three adaptive taps (two equal d6n) and one equal t§(n)).
Numerical simulations for a complex envelope formed by sums
of complex tones, and for a bandlimited white noise complex
envelope show that the calibration scheme can be effective
for low or moderate values of the image indéxFor large
values values of/, i.e. for large carrier frequencies, higher
order terms may be needed in the Taylor series approximstion
(13) and (14) of the reconstruction filters, which would in-
crease significantly the complexity of the proposed calibra
method. Alternatively, one may consider estimating adapti

Finally, the PSD of the complex envelope after calibrationthe entire FIR impulse responses of filtdis and andH, to
is shown in Fig. 13. The PSD is computed by selecting theminimize errore(n). This approach has a high computational
final block of lengthNV = 10* samples of the blind calibration complexity, but it could potentially correct additionalsADC

simulation, after the estimation algorithm has converged.

impairments, such as bandwidth mismatches [10], [15]<[17]



APPENDIXA
IMPULSE RESPONSES OF THGERADIENT FILTERS

The impulse responses of gradient filtefs; (e’) and

Hao(e?*) are obtained by taking the partial derivatives with

10

By performing a first-order Taylor series expansion of

L(e’%, ) in the vicinity of 8, we find

L 0) ~ [1 0]

respect tod of the impulse responses of the correction filters +eL, (e7*) 4+ nLs(e?) , (40)
hi(n,d) and ha(n,d) given by (10) and (11). This gives i
wi
R{h11(n,d)} = R{h21(n,d)} =0, e=A—~ , n=58-2,
S{h11(n,d)} = 7(20 + sgn(wy)) csc? (m(20 + sgn(wy))d)d(n)  where
2 _ 2 ) )
+m[2£ cse (27r£d)' (20 + sgn(wp)) csc”(m(2€ + sgn(wp))d)] L) = —[1 0]M'(e,d)
" sin((m — |wp|)n) (34) 0 ‘
™ ’ X { 0 1 }M(ew,d) (42)
and
1 and
S{ha1(n,0)} = gr(n+d) , _
g Ls(e™)=[1 0]M (e, d)
i = ey Ut £ D) 0 0T g O npr
sin(2mtd) X[jw[ 01 }M(W,d) - %M(eﬂw,d)] . (42)
_27T£sin((7r — |wp|)(n + d)) cos(2mld)
sin?(2m4d) We find
cos((r — |ws ) (n + d) — ) o 1 0 0
| sin(m(2¢ + sgn(wyp))d) %M(e d) = 2 { J(eI)G(e?¥)  J*(eTI)G*(eIw) L
+7(2¢ + sgn(wp)) sin((m — |wp|)(n + d) — 7d) (43)
Lot sl where A |
sin?( (20 + sgn(ws) )d) J(e) = - InG(e)
1
R . .
— 73{h2(n, 0)} . (35) s given by
APPENDIX B ) (&) = { —j2r(f4+1) —7<w< —m+w
QUADRATIC APPROXIMATION OF J () —j2mt “THwsw<T,
To derive a quadratic approximation o‘f(é), we start by  for w, > 0 and
noting that the model of Fig. 2 implies that the DTFEXg(e’*) ]
and X;(e’“) of the sub-ADC sequences can be expressed in J(e?¥) = { —j2nl —TSw ST+ wp
term of the DTFTC(e/“) of complex envelope(n) as —j2r(l—1) m+w, <w<m.

X (e7%) B o C( J(w=wp))
F_l(ejlw)eXQ(ejw) :| - M(eJ 7d) |: C*Fej(w+wb)) :| (36)
where
i 1 1 1
M(e™,d) = 3 { G(e¥) G*(e™1v) } ' 57

Accordingly, the DTFT of signalr(n,é) in Fig. 4 can be
expressed as

Re0) = [meed) w0 ][ 100 ]
- L(ej%éﬂg(fjlﬁff)] (38)
with
L™, 0)=[1 0]M (%, d)
1 0 4
x l 0 gomi-a ]M(ew,d). (39)

for w, < 0. Then by observing that the bandpass filter
Hgp(e’¥) has been selected such that
Hgp(e?)C(e?@W™0)) = 0, (44)

we conclude that the DTFT of error signal(e/“, 8) can be
expressed as

E(e’,0) = Hgp(e'*)R(', 0)

~ [eN,(e7%) 4 N3 (e2<)]C* (eI @Fw)y - (45)
where after some substitutions, we find
N, () = Hpp(e’*)Ly (") { (1) }
= —Hpp(™)[1 0]
1w 0
= %HBp(ejw)Hl(ejw,d), (46)



and

Ns(e7*) Hpp(e’)Ls(e’) [ (1) ]

(jw = J*(e7¥))Hpp(e’)[ 1 0 ]
O,

G (e=72) /2 ]

%(J*(e_j“)——qu}JBp(ej“)[ﬂ(ej“,d).(47)

xM™ (e, d) [

in expression (45)C*(e~7(wtw)) represents the Fourier
transform of signal

q(n) = e77¥"c*(n) .

To evaluate the power af(n, §), we assume that the complex
envelope procesgn) is zero-mean WSS, i.e. that the complex
autocorrelation function

R.(m) = Elc(n+ m)c*(n)]

depends omn only. The power spectral density (PSD)«h)
is then defined as

S.(e?) = Z Re(m)e 7™

(48)
It is 27-periodic and since autocorrelatioR.(m) satisfies
R.(m) = RX(—m), it is real and non-negative (but not

necessarily even). Then the autocorrelation of sigial) is
Ry(n) = e 7% Ro(—m)

and its PSD is
Ry(e3) = §.(e7IFen))

Expression (45) for the DTFT of error signain, #) implies
that it is also WSS with PSD

Se(n,0) = [N, ()2 + 2| Ns(e*) 2] Sy () |
(49)

where the absence of cross-term is due to the fact that tthe re

part of purely imaginary termy*(e=/*) — jw is zero. By using
this expression inside (18), we find that

R 1 [T o
= _— Jw
J(0) g /_7r Se(e’?,0)dw
= J,e+ Jsn? (50)
with
1 [T ) )
L= g | NS ()
1 . .
= g ), O APS(Tds 61
and
1 [T o o
J5: E _W|N5(€J )‘2Sq(€J )dw
1 . .
- ¥ —Jw\ _ s 12 Jw 2
tor ), 1) gl a)

m

XS (eI @Fwn))dy (52)
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In equations (51) and (52),, = I mod (27) is defined so
that,, is a subset of—, . SinceH; (e/*, d) is a piecewise
constant and nonzero filter, the expressions (51) and (58yim
that the coefficients/, and Js are nonzero, so that(@) is a
positive definite quadratic function afandn in the vicinity
of 8, as long as signaj(n) = e/“*"c*(n) has some power
in band,,. Equivalently,c(n) must have some power in the
band

Ir=[(1-a)m, (14 a)r] — 2w, mod (27). (53)

In this caseJ(#) will be minimized whene = 1 = 0, or
equivalently when estimates = v and§ = ¢ correspond to
the true mismatch values.

At this point, it is worth noting that the banf- has width
2am and is completely contained inside the spectral support
region[—(1 — a)w, (1 — a)w] of ¢(n) as long asum < |wy| <
(I — a)m. On the other hand when, is located either close
to the center of interval—m, 7] (with |wy| < am) or located
close to its edges (withw, + 7| < am, only part of I is
located within the spectral support regipa(1—a)m, (1—a)n)
of ¢(n). Whenwy is exactly equal to zero ot-r, then Iy
and the spectral support regida-(1 — «)7, (1 — a)n] are
disjoint, so that the calibration technique proposed heite w
not work as described. To deal with such cases, it would
be useful to identify a frequency band other thanwhere
r(n,0) = e=I“v"c(n) is free of energy, and then in the block
diagram of Fig. 4, change the passband of filtBsp to this
zero energy band, so that condition (44) still holds.

At this point it is worth indicating that although it has been
assumed that(n) is WSS in order to derive the closed-form
expressions (52) and (53) for the coefficiedtsand Js of the
guadratic approximation (51) oﬂ(é), this assumption was
needed only for analysis purposes. The conclusion ft{&}
is locally positive definite quadratic in the vicinity @ holds
in general, even it:(n) is nonstationary, as long agn) has
significant power in the frequency barfg during segments
of time which are long enough to ensure that the estimation
Rgorithm (22) converges.
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