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Motivation
� Applications requiring ADCs operating at high data rates �

Time-interleaved ADCs.

� Constituent ADCs have gain, offset, timing mismatches that need to be
estimated and corrected in the digital domain.

� Correction achieved by digital filter banks operating on ADCs outputs
(Johansson and Lowenborg, 2002; Prendergast et al. 2004). Requires 10
to 20 % excess samples.

� Timing offset estimation can be performed either with test signals or
blindly. Blind methods do not lower ADC throughput and can adjust to
changes online.
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Problem Formulation
� If � � ��� � is a CT bandlimited signal with bandwidth � , can be recovered

from its samples � ��	 ��
 � � ��	� 
 � if � 
 
 � �� 
� �� 
 � ��� .

� Instead of using a single fast ADC, we employ � slow ADCs operating
at � 
 � � .
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Problem Formulation (cont’d)

.

.

.

PSfrag replacements �� � �
� � � �

�� � �
� � � �

� � �! " � �!# "

Analog Mux Digital Mux

Applied Math. Seminar Department of Electrical and Computer Engineering
University of California at Davis



6

Problem Formulation (cont’d)
� Due to timing offsets, quantization errors and thermal noise, output of

$ -th ADC

% & ��' �
 � & ��' �)( * & ��' �

for � + $ + � , where * & � ' ��, � �.- / � 0 �21 � WGN and

� & ��' �
 � � ��' � &( � � $43 � �)( 5 &!6 7 �� 
 �

where� &
 �� 
 = sampling period of slow ADCs, 5 &!6 7� 
 
 timing
offset of $ -th ADC measured wrt 1st ADC

� If 8 & ��94: ; �
 94: ; < &!6 7 => ?A@ B C , analysis filter bank model for � 
 D :
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Problem Formulation (cont’d)

E FHG I JLK M N FHO I

P N FO I

Q R FHS!TAU I JLK M R FHO I

P R FO I

Q V FHSLTAU I JLK M V FHO I
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Problem Formulation (cont’d)
� For � 
 D , let

X Y ��9Z: ; � 
 []\ 7 �9�: ; � \ ^ �9�: ; � \ _ �9�: ; � \ ` �9�: ; � a
b

X c ��9d: ; � 
 [e\ ��94: f g � \ �94: < f g 6h i C � \ �94: < f g 6 j C � \ ��94: < f g 6 _h i C � a
b

= DTFT of exact ADC outputs, and vector of alias components of fast
sampled sequence, and

k 
 [ 5 7 5 ^ 5 _ a
b

= vector of timing mismatches.
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Problem Formulation (cont’d)
� We have

X Y �9Z: ; �
 �
Dml ��9Z: ; / k � X c �9Z: ; � /

where

l ��9d: ; / k �
 n �9d: ; / k ��o � k �

n �9Z: ; / k �p
 qr s t u 9Z: f g < &!6 7 => ?@ B C / � + $ + D v

and

o � k �

wxxxxx

y
� � � �

� z 7 z ^ 7 z _ 7

� z ^ z ^^ z _ ^

� z _ z ^_ z __
{ |||||

}
= Vandermonde matrix with

z &
 9 6 : h i < & => ? C ~
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Problem Formulation (cont’d)
� By invertingo � k � , we can find synthesis filters � & �9�: ; � such that

\ ��9d: ; �

�

&� 7
� & �9d: ; �\ & ��9d: ; �

For small 5 & ’s, filters � & admit a closed-form 1st-order Farrow
representation.

� Synthesis filter bank for � 
 D :
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Problem Formulation (cont’d)

M N FO I �LK � N FHS!TAU I �E F G I

M R FO I �LK � R FHS!TAU I

M V FO I �LK � V FHSLTAU I

M W FO I �LK � W FHS!TAU I
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Blind Calibration
� Let � 
 D , if � 
 � � 
 3 �� � � � 
 = % of excess samples, the alias matrix

is rank deficient for ��� ��� D � � :

X Y �9Z: ; �
 �
D l � �9Z: ; / k �

wxx
y

\ ��94: < f g =h i C �

\ ��9�: f g �

\ ��94: < f g 6 h i C �
{ ||

}

withl � �9�: ; / k �
 n ��9�: ; / k � o � � k � , where

o � � k �

wxxxxx

y
� � �

z 6 77 � z 7

z 6 7^ � z ^

z 6 7_ � z _
{ |||||

}
is a D� � reduced Vandermonde matrix.
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Blind Calibration (cont’d)

;

`� B <!��� f C

6 � j 6 ` j 6 _ j 6 ^ j 6 j j ^ j _ j ` j � j0
` � j ` � j

� <��� � f g�� h � C � <��� � f g�� h i � C � <��� � f g @h i � C � <!��� � f g @h � C� <!��� f g C

� Can find a nulling filter bank � ��9 : ; / k � such that

� ��9Z: ; / k � X Y �9Z: ; �
 -
for �� ��� D � � .
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Blind Calibration (cont’d)
� Structure of nulling filter bank:

� �9Z: ; / k �
 � b � k � n 6 7 �9Z: ; / k �

for �� ��� D � � , =0 otherwise, where
� b � k �
 [�� 7 � k � � ^ � k � � _ � k � � ` � k � a

satisfies
� b � k ��o � � k �
 - ~

� Set� 7 
 � . Then, for small 5 & s:

� ^ � k � � 3 � ( �
D � 5 ^ ( 5 _ 3 5 7 �

� _ � k � � � 3 �
1 � 5 _ 3 5 7 �

� ` � k � � 3 � ( �
D �3 5 ^ ( 5 _ 3 5 7 �
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Blind Calibration (cont’d)
� Consider the 1st-order Farrow approximation

� & ��9Z: ; / 5 &!6 7 � 
 9 6 : ; < &!6 7 => ?A@ B C� ` � �� ��9Z: ; �

� � & 0 ��9Z: ; �)( 5 &!6 7 � & 7 ��9Z: ; � /

where � �� �9�: ; �
 ideal lowpass filter of bandwidth D � � .

� Let

  & ��' �p
 ¡ & 0 ��' �£¢ % & ��' � / ¤ & ��' �p
 ¡ & 7 ��' �£¢ % & ��' � ~

Consider the adaptive null-steering structure

Applied Math. Seminar Department of Electrical and Computer Engineering
University of California at Davis



17

Blind Calibration (cont’d)

PSfrag replacements
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Blind Calibration (cont’d)
� Consider the objective function

¹ �
º k �
 » ¼9 ^ ��' / º k � ½ �21

where
9 � ' / º k �


`
&� 7

� & �
º k � �   & ��' �)( ¤ & � ' �
º 5 & �

= nulling filter output.

� We have

¾À¿ Á 9 ��' / º k � � wxx
y

3 ¤ ^ ��' �
¤ _ � ' �

3 ¤ ` ��' �
{ ||

}
( �

D
wxx

y
3   ^ ��' � 3   ` � ' �)( 1   _ � ' �

  ^ � ' � 3   ` ��' �

  ^ � ' �)(   ` ��' � 3 1   _ ��' �
{ ||

}
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Blind Calibration (cont’d)
� º k � ' � obtained by stochastic gradient algorithm

º k � ' ( � �

º k ��' � 3 Â 9 ��' / º k � ' � � ¾Ã¿ Á 9 � ' / º k � ' � �

where Â 
 step size, with initial condition
º k � - �
 Ä ~
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Convergence
� Use ODE/stochastic averaging method. Assume Â small, � � ��� � zero-mean

WSS.

� Write adaptive algorithm as

º k ��' ( � �

º k � ' � ( ÂÆÅ �
º k � ' � / Ç � ' � �

where Ç ��' �
 ¼4È b ��' ��É b � ' � ½b . Due to the stochastic gradient structure
of the algorithm,

� �
º k �
 » ¼� �
º k / Ç ��' � � ½
 3 ¾Ã¿ Á ¹ �
º k � /

so ¹ � k � = Lyapunov function for ODE

Ê º k
Ê � 
 � �

º k � �� � /
so ODE trajectories converge to a minimum of ¹ �
º k � .
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Convergence (cont’d)
� For small k and

º k

¹ �
º k � � �

1ÌË Í � 5 ^ 3 5 7 3 5 _ � 3 �
º 5 ^ 3 º 5 7 3 º 5 _ � Î ^ Ï

( ÍÐ � 5 7 3 5 _ � 3 �
º 5 7 3 º 5 _ � Ñ ^ ( Ð 5 ^ 3 º 5 ^ Ñ ^ Î � ( � � �
º k � � ^ Ò Ó

with
Ï 
 �

1 �
� j

6 � j � ^ Ô Õ �9Z: ; � Ê �

�
1 
 �
1 �

h i = � j

h i 6 � j � ^ Ô Õ �9Z: ; � Ê �

Ò 
 1 � � 0

where we neglect cubic terms.
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Convergence (cont’d)
� For noiseless case, unique minimum of ¹ for small offset and offset

estimates is

º k 
 k if Ï � - and � � - , so � � 	 � must have power in band

¼3 � � / � � ½ and ¼×Ö � �21 3 � � / Ö � �21 ( � � ½ .

� Ensures that as' Ø Ù
º k ��' ��, � � k / ÂÆÚ �

whereÚ = positive definite matrix.
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Bandlimited WGN input
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Simulation parameters

� Signal bandwidth: ¼3 - ~ ÛÜ � / - ~ ÛÜ � ½

� 5 7 
 - ~- 1 , 5 ^ 
 - ~- � , 5 _ 
 3 - ~- � .

� Â 
 1 � - 6 ` .

� design � 
 - ~1 1 Ü .
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Multitone sinusoidal input
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Calibrated ADC output
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Conclusion
� Blind calibration of time-interleaved ADCs presented, requires 10 to 20

% oversampling and intermittent excitation of certain frequency bands.

� Simulated for up to 16 channels, but 2 or 4 channels primary interest for
today’s ADC technology.

� Postprocessing of analog circuits with mismatched components source of
interesting adaptive signal processing problems.
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Thank you!!
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