Topics:

a) Properties of the matrix exponential

b) Eigenvalue/eigenvector expressions for e^{At}

Matrix exponential: Let A be an $n \times n$ real matrix. Then the matrix exponential $\Phi(t) = \exp(At)$ is defined as the solution of the differential equation

$$\Phi(t) = A\Phi(t)$$

for $t \geq 0$, with initial condition $\Phi(0) = I_n$. If $F(s)$ denotes the Laplace transform of $\Phi(t)$, by Laplace transforming equation (1), we obtain

$$sF(s) - \Phi(0) = AF(s),$$

so that

$$(sI - A)F(s) = \Phi(0) = I_n.$$

This implies $F(s) = (sI - A)^{-1}$, so that $\exp(At)$ can also be obtained through the Laplace transform relation

$$\exp(At) \leftrightarrow (sI - A)^{-1}.$$

Property 1: $\exp(At)$ admits the power series expansion

$$\exp(At) = I_n + At + \frac{(At)^2}{2!} + \ldots + \frac{(At)^k}{k!} + \ldots,$$

for $t \geq 0$, which can be viewed as a matrix version of the power series expansion

$$\exp(at) = \sum_{k=0}^{\infty} \frac{(at)^k}{k!}$$

of the scalar exponential function. To verify (3), denote the power series on the right hand side of (3) by $\Phi(t)$ and assume that it converges and can be differentiated term by term. Differentiating each term gives

$$\frac{d}{dt} \Phi(t) = A \left(I_n + At + \ldots + \frac{(At)^{k-1}}{(k-1)!} + \ldots \right) = A\Phi(t)$$

for $t \geq 0$, with $\Phi(0) = I_n$, so that $\Phi(t)$ obeys the differential equation (1) defining the matrix exponential.
Another way of deriving (3) relies on the observation that for \(s \) sufficiently large, \((sI - A)^{-1}\) admits the power series expansion
\[
(sI - A)^{-1} = \frac{1}{s}(I - \frac{A}{s})^{-1} = \frac{1}{s}[I + \frac{A}{s} + (\frac{A}{s})^2 + \ldots + (\frac{A}{s})^k + \ldots].
\] (4)

Then, using the fact that
\[
\frac{t^k}{k!} \overset{LT}{\longleftrightarrow} \frac{1}{s^{k+1}},
\]
and taking the inverse Laplace transform of (4) gives (3).

Examples: (i) Consider the \(r \times r \) nilpotent matrix
\[
N = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0
\end{bmatrix}
\]
which has ones on its first superdiagonal, and zeros everywhere else. It has property that for \(\ell < r \) the matrix
\[
N^\ell = \begin{bmatrix}
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & 0 & \ldots & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0
\end{bmatrix}
\]
has ones on its \(\ell \)-th superdiagonal, and zeros everywhere else, and \(N^\ell = 0 \) for \(\ell \geq r \). Then in the power series expansion (3) for \(\exp(Nt) \), only the first \(r \) terms are nonzero, so that
\[
\exp(Nt) = I_r + Nt + \ldots + \frac{(Nt)^{r-1}}{(r-1)!} + \frac{t^r}{(r-1)!}.
\]

(ii) Let
\[
A = \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}.
\]
Then $A^{2p} = (-1)^p I_2$ and $A^{2p+1} = (-1)^p A$, where I_2 denotes the 2×2 identity matrix, so that
\[
\exp(At) = \left(1 - \frac{t^2}{2!} + \frac{t^4}{4!} \cdots \right) I_2 + \left(t - \frac{t^3}{3!} + \frac{t^5}{5!} + \cdots \right) A
\]
\[
= \cos t I_2 + \sin t A = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}.
\]

Property 2: The matrix exponential has the *transition property*
\[
\exp(A(t_1 + t_2)) = \exp(At_1) \exp(At_2)
\]
for $t_1, t_2 \geq 0$. To see how this property arises, consider solving the differential equation (1) for $0 \leq t \leq t_1 + t_2$. We can solve the equation in one step over the whole interval, in which case the solution at $t = t_1 + t_2$ is $\exp(A(t_1 + t_2))$. Alternatively, we can first solve the equation over $[0, t_2]$ and then over $[t_2, t_1 + t_2]$. In this case the solution at $t = t_2$ is $\exp(At_2)$, and the solution for $t_2 \leq t \leq t_1 + t_2$ is obtained by solving
\[
\frac{d}{dt} \Phi(t) = A\Phi(t)
\]
over $[t_2, t_1 + t_2]$ with initial condition $\Phi(t_2) = \exp(At_2)$. But the system is LTI, so that the solution at $t = t' + t_2$ with $t' \geq 0$ is given by
\[
\Phi(t) = \exp(A t') \Phi(t_2).
\]
Setting $t = t_1 + t_2$ and $t' = t_1$ in this identity gives (5).

Property 3: In general if A and B are two arbitrary matrices
\[
\exp((A + B)t) \neq \exp(At) \exp(Bt).
\]
To see this, let
\[
A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.
\]
Both A and B are nilpotent with
\[
\exp(At) = \begin{bmatrix} 1 & -t \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \exp(Bt) = \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix},
\]
so
\[
\exp(At) \exp(Bt) = \begin{bmatrix} 1 & -t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix} = \begin{bmatrix} 1 - t^2 & -t \\ t & 1 \end{bmatrix}.
\]
On the other hand
\[
A + B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},
\]
and it was shown earlier that
\[
\exp((A + B)t) = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}.
\]
which is clearly different from \(\exp(At) \exp(Bt) \).

However if \(A \) and \(B \) commute, i.e., \(AB = BA \), we have

\[
\exp((A + B)t) = \exp(At) \exp(Bt) .
\] (7)

To prove this, note that when \(A \) and \(B \) commute

\[
(A + B)^k = A^k + \binom{k}{1} A^{k-1} B + \ldots + \binom{k}{1} A B^{k-1} + B^k .
\]

Taking this identity into account, and multiplying power series term by term gives

\[
\exp(At) \exp(Bt) = \left[I + At + \frac{(At)^2}{2!} + \ldots \right] \left[I + Bt + \frac{(Bt)^2}{2!} + \ldots \right] = I + (A + B)t + \frac{(A + B)t^2}{2!} + \ldots = \exp((A + B)t) .
\]

Examples: (i) Consider the \(r \times r \) Jordan block

\[
J = \begin{bmatrix}
\lambda & 1 & & 0 \\
& \lambda & \ddots & \\
& & \ddots & \ddots \\
0 & & & \lambda \\
\end{bmatrix} = \lambda I_r + N
\]

where \(\lambda I_r \) and \(N \) commute. We have

\[
e^{\lambda t} = \left(1 + \lambda t + \frac{(\lambda t)^2}{2!} + \ldots \right) I_r = e^{\lambda} I_r
\]

and

\[
\exp(Jt) = \exp((\lambda I_r + N)t) = \exp(\lambda I_r) \exp(Nt)
\]

\[
= \exp(\lambda t) \begin{bmatrix} 1 & t & t^r-1/(r-1)! \end{bmatrix} .
\]

(ii) Let

\[
A = \begin{bmatrix} \sigma & -\omega \\
\omega & \sigma \end{bmatrix} = \sigma_2 + \omega Q
\]

with

\[
Q \triangleq \begin{bmatrix} 0 & -1 \\
1 & 0 \end{bmatrix} ,
\]
where I_2 and Q commute. Then
$$
\exp(At) = \exp(\sigma t) \exp(\omega Qt) = \exp(\sigma t) \begin{bmatrix}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{bmatrix}.
$$

Property 4: $\exp(At)$ is an invertible matrix for all $t \geq 0$ and
$$
\left(\exp(At) \right)^{-1} = \exp((-A)t). \tag{8}
$$
To see this, note that A and $-A$ commute and $A + (-A) = 0$, so that
$$
e^{0t} = I_n = \exp(At) \exp((-A)t).
$$

Eigenvalue/eigenvector expressions: The matrix exponential $\exp(At)$ can also be expressed in terms of the eigenvalues and eigenvectors (or generalized eigenvectors) of A.

Case 1: A is diagonalizable: In this case A admits n independent eigenvectors p_i corresponding to eigenvalues λ_i, i.e.
$$
Ap_i = \lambda_i p_i \tag{9}
$$
for $1 \leq i \leq n$. The relations (9) can be combined as a single matrix equation
$$
AP = PA
$$
with
$$
P = \begin{bmatrix} p_1 & \cdots & p_i & \cdots & p_n \end{bmatrix} \quad \text{and} \quad A = \text{diag} \{ \lambda_i, 1 \leq i \leq n \},
$$
so that $A = PA^{-1}$. The matrix
$$
P^{-1} = Q = \begin{bmatrix}
q_1^T \\
\vdots \\
q_i^T \\
\vdots \\
q_n^T
\end{bmatrix}
$$
yields the left eigenvectors of A since $P^{-1}A = P^{-1}A$, or equivalently
$$
q_i^T A = \lambda_i q_i^T,
$$
for $1 \leq i \leq n$. Then
$$
A^2 = (PAP^{-1})(PAP^{-1}) = PA^2P^{-1}
$$
and $A^k = P\Lambda^kP^{-1}$, so that
$$
\exp(At) = \sum_{k=0}^{\infty} \frac{(At)^k}{k!} = P \left[\sum_{k=0}^{\infty} \frac{(\Lambda t)^k}{k!} \right] P^{-1}
= P \exp(\Lambda t) P^{-1}. \tag{10}
$$
The main advantage of expression (10) is that, since A is diagonal, its exponential matrix is easy to compute and is also diagonal, i.e.

$$e^{At} = \text{diag} \{ \exp(\lambda_i t), 1 \leq i \leq n \}.$$

The identity (10) expresses $\exp(At)$ completely in terms of the eigenvalues and right and left eigenvectors of A. To see this, note that

$$\exp(At) = P \exp(\Lambda t) Q$$

$$= \begin{bmatrix} p_1 & \ldots & p_i & \ldots & p_n \end{bmatrix} \text{diag} \{ \exp(\lambda_i t), 1 \leq i \leq n \}$$

$$= \begin{bmatrix} q_1^T \\ \vdots \\ q_i^T \\ \vdots \\ q_n^T \end{bmatrix}$$

can be rewritten as

$$e^{At} = \sum_{i=1}^{n} p_i q_i^T \exp(\lambda_i t).$$ (11)

Example: Let

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & -1 & 0 \\ 6 & 0 & -6 \end{bmatrix}.$$

Then

$$sI - A = \begin{bmatrix} s-1 & 0 & 2 \\ 0 & s+1 & 0 \\ -6 & 0 & s+6 \end{bmatrix}$$

and

$$a(s) = \det(sI - A) = (s+1) \left[(s-1)(s+6) + 12 \right] = (s+1)(s+2)(s+3).$$

The eigenvector p_1 corresponding to $\lambda_1 = -1$ is obtained by solving

$$(\lambda_1 I - A)p_1 = \begin{bmatrix} -2 & 0 & 2 \\ 0 & 0 & 0 \\ -6 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

This gives $x_1 = x_3 = 0$ with x_2 free, and since the scaling of p_1 is arbitrary, we select

$$p_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Similarly the eigenvector p_2 corresponding to $\lambda_2 = -2$ is obtained by solving

$$(\lambda_2 I - A)p_2 = \begin{bmatrix} -3 & 0 & 2 \\ 0 & -1 & 0 \\ -6 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

$$p_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$
which gives \(x_2 = 0 \) and \(3x_1 = 2x_3 \), so that we can select

\[
p_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}.
\]

Finally, to find eigenvector \(p_3 \) corresponding to \(\lambda_3 = -3 \), we solve

\[
(\lambda_3I - A)p_3 = \begin{bmatrix} -4 & 0 & 2 \\ 0 & -2 & 0 \\ -6 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\]

This gives \(x_2 = 0 \) and \(x_3 = 2x_1 \), so that we can choose

\[
p_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.
\]

Inverting the matrix

\[
P = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 3 & 2 \end{bmatrix}
\]

gives

\[
Q = P^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & -1 \\ -3 & 0 & 2 \end{bmatrix},
\]

so that

\[
\exp(At) = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} \exp(-t) & 0 & 0 \\ 0 & \exp(-2t) & 0 \\ 0 & 0 & \exp(-3t) \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & -1 \\ -3 & 0 & 2 \end{bmatrix}
\]

\[
= \begin{bmatrix} 4\exp(-2t) - 3\exp(-3t) & 0 & 2[-\exp(-2t) + \exp(-3t)] \\ 0 & \exp(-t) & 0 \\ 6[\exp(-2t) - \exp(-3t)] & 0 & -3\exp(-2t) + 4\exp(-3t) \end{bmatrix}.
\]

In the expression (11) for \(\exp(At) \), although \(\exp(At) \) is real, the eigenvalues \(\lambda_i \) and eigenvectors \(p_i \) and \(q_i \) may be complex.

Example: Let

\[
A = \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & 0 \\ 2 & 0 & 0 \end{bmatrix}.
\]

Then

\[
sI - A = \begin{bmatrix} s + 2 & 0 & 1 \\ 0 & s + 2 & 0 \\ -2 & 0 & s \end{bmatrix},
\]

7
and
\[a(s) = \det sI - A = (s^2 + 2s + 2)(s + 2) = (s + 1 - j)(s + 1 + j)(s + 2)i. \]

Thus \(A \) has two complex conjugate eigenvalues \(\lambda_\pm = -1 \pm j \) and a real eigenvalue \(\lambda_3 = -2 \). The eigenvector \(p_+ \) corresponding to \(\lambda_+ \) is obtained by solving

\[(\lambda_+ I - A)p_+ = \begin{bmatrix} 1 + j & 0 & 1 \\ 0 & 1 + j & 0 \\ -2 & 0 & -1 + j \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \]

which gives \(x_2 = 0, \ x_3 = -(1 + j)x_1 \), so that we can select

\[p_+ = \begin{bmatrix} 1 \\ 0 \\ -(1 + j) \end{bmatrix}. \]

By observing that \(\lambda_- = \lambda_+^* \) and \(A \) is real, and taking the complex conjugate of the eigenvector equation for \(\lambda_+ \) we find that

\[p_- = p_+^* = \begin{bmatrix} 1 \\ 0 \\ -(1 - j) \end{bmatrix} \]

satisfies

\[(\lambda_- I - A)p_- = 0, \]

so it is the eigenvector corresponding to eigenvalue \(\lambda_- \). Finally, the eigenvector corresponding to \(\lambda_3 = -2 \) is obtained by solving

\[(\lambda_3 I - A)p_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -2 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \]

which yields \(x_1 = x_3 = 0 \), so that we can select

\[p_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}. \]

Then if
\[P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -(1 + j) & -(1 - j) & 0 \end{bmatrix} \]

we find
\[Q = P^{-1} = \begin{bmatrix} (1 + j)/2 & 0 & j/2 \\ (1 - j)/2 & 0 & -j/2 \\ 0 & 1 & 0 \end{bmatrix} \]

and
\[\exp(At) = P \exp(At)Q \]
\[\exp(A) = \begin{bmatrix} \exp(-t + j\tau) & 0 & 0 \\ 0 & \exp(-t - j\tau) & 0 \\ 0 & 0 & \exp(-2\tau) \end{bmatrix}. \]

Real form of the eigenvalue/eigenvector expansion of \(\exp(At) \): To obtain expressions involving only real quantities, one can proceed as follows. First observe that since \(A \) is a real matrix, if \((\lambda_i, p_i) \) is an eigenvalue/eigenvector pair for \(A \), so is \((\lambda_i^*, p_i^*) \). Assume now that \(A \) has \(r \) pairs of complex conjugate eigenvalues and \(q = n - 2r \) real eigenvalues. Then order the eigenvalues of \(A \) as \(\{\lambda_1, \lambda_1^*, \lambda_2, \lambda_2^*, \ldots, \lambda_r, \lambda_r^*, \lambda_{2r+1}, \ldots, \lambda_n\} \). In the eigenvalue/eigenvector relation \(A p_k = \lambda_k p_k \), the eigenvalue \(\lambda_k \) and eigenvector \(p_k \) can be decomposed into their real and imaginary parts as
\[\lambda_k = a_k + j b_k \]
\[p_k = p_k^R + j p_k^I. \]

This implies that
\[A p_k^R = a_k p_k^R - b_k p_k^I \]
\[A p_k^I = b_k p_k^R + a_k p_k^I. \]

Then, if we consider the matrix
\[M = \begin{bmatrix} p_1^R p_1^I & \cdots & p_k^R p_k^I & \cdots & p_r^R p_r^I & p_{2r+1} & \cdots & p_n \end{bmatrix}, \]

\(M \) is real and
\[AM = MD \]

with
\[D = \begin{bmatrix} D_1 \\ \vdots \\ D_k \\ \cdots \\ D_r \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \lambda_{2r+1} \\ 0 & \cdots & \lambda_n \end{bmatrix}, \]

where
\[D_k \triangleq \begin{bmatrix} a_k & b_k \\ -b_k & a_k \end{bmatrix}. \]

If \(N = M^{-1} \), this implies
\[A = MDN \]

(12)

where \(D \) is block diagonal. It is constituted of \(r \) \(2 \times 2 \) blocks corresponding to the \(r \) pairs \((\lambda_k, \lambda_k^*) \) of complex conjugate eigenvalues, as well as \(n - 2r \) \(1 \times 1 \) blocks corresponding to the \(n - 2r \) real eigenvalues \(\lambda_{2r+1}, \ldots, \lambda_n \) of \(A \).
The expression (12) for A implies

$$\exp(At) = M \exp(Dt)N,$$

(13)

with

$$\exp(Dt) = \begin{bmatrix}
\exp(D_1 t) & & \\
& \ddots & \\
& & \exp(D_k t)
\end{bmatrix}
\begin{bmatrix}
0 & & \\
& \ddots & \\
& & \exp(\lambda_{2r+1} t)
\end{bmatrix},$$

and

$$\exp(D_k t) = \exp(a_k t)
\begin{bmatrix}
\cos(b_k t) & \sin(b_k t) \\
-\sin(b_k t) & \cos(b_k t)
\end{bmatrix},$$

where the expression (13) involves only real matrices.

Example: It was found earlier that the matrix

$$A = \begin{bmatrix}
-2 & 0 & -1 \\
0 & -2 & 0 \\
2 & 0 & 0
\end{bmatrix}$$

has eigenvalues $\lambda_{\pm} = -1 \pm j$ and $\lambda_3 = -2$. Its eigenvectors are

$$p_{\pm} = \begin{bmatrix} 1 \\ 0 \\ -(1 \pm j) \end{bmatrix} \text{ and } p_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The vector p_+ can be decomposed as $p_+ = p_R + j p_I$ with

$$p_R = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ and } p_I = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

Let

$$M = \begin{bmatrix} p_R & p_I & p_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

$$N = M^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} -1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$
Then
\[
\exp(At) = M \exp(Dt)N
\]
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
-1 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
\exp(-t) \cos t & \exp(-t) \sin t & 0 \\
-\exp(-t) \sin t & \exp(-t) \cos t & 0 \\
0 & 0 & \exp(-2t)
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & -1 \\
0 & 1 & 0
\end{bmatrix}.
\]

Case 2: \(A \) is not diagonalizable. In this case \(A \) has a Jordan block of size 2 or larger, or equivalently it has a repeated eigenvalue which admits fewer independent eigenvectors than its multiplicity. In this case, we can find an invertible matrix \(T \) constituted of the eigenvectors and generalized eigenvectors of \(A \) such that
\[
A = TJJ^{-1}
\]
with
\[
J = \begin{bmatrix}
J_1 & & \\
& \ddots & \\
& & J_i
\end{bmatrix}
\]
\[
J_i = \begin{bmatrix}
\lambda_i & 1 & 0 \\
& \ddots & \ddots \\
& & \lambda_i & 1 \\
0 & & & \lambda_i
\end{bmatrix} = n_i \times n_i \text{ Jordan block ,}
\]
where \(\sum_{i=1}^{\ell} n_i = n \). The matrix exponential \(\exp(At) \) is then given by
\[
\exp(At) = T \exp(Jt)T^{-1},
\]
with
\[
\exp(Jt) = \begin{bmatrix}
\exp(J_1 t) & 0 \\
& \ddots & 0 \\
& & \exp(J_\ell t)
\end{bmatrix}
\]
and
\[
\exp(J_i t) = \exp(\lambda_i t)
\]
\[
\begin{bmatrix}
1 & t & \frac{t^{n_i-1}}{(n_i-1)!} \\
& \ddots & \ddots \\
& & 1
\end{bmatrix}.
\]
Example: Let

\[A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \]

Then

\[sI_4 - A = \begin{bmatrix} s - 1 & -2 & 0 & -1 \\ 0 & s - 1 & 0 & 0 \\ 0 & 1 & s - 1 & 0 \\ 0 & 0 & 0 & s - 1 \end{bmatrix}, \]

and using Laplace’s expansion of \(a(s) = \text{det} \ sI - A \) with respect to the first column yields \(a(s) = (s - 1)^4 \). The eigenvectors \(\mathbf{p} \) of \(A \) corresponding to \(\lambda_1 = 1 \) satisfy

\[(\lambda_1 I - A)\mathbf{p} = \begin{bmatrix} 0 & -2 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \]

This gives \(x_2 = x_4 = 0 \), so that \(A \) has the two eigenvectors

\[\mathbf{p}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}. \]

Since the number of eigenvectors (two) is less than the multiplicity (four) of \(\lambda_1, A \) is not diagonalizable. Observing that \((\lambda_1 I - A)^2 = 0 \), we can conclude that \(A \) will have 2 Jordan blocks of size \(2 \times 2 \) corresponding to \(\lambda_1 = 1 \). The generalized eigenvector \(\mathbf{g}_1 \) corresponding to \(\mathbf{p}_1 \) is given by

\[(A - \lambda_1 I)\mathbf{g}_1 = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \mathbf{p}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \]

which gives \(x_2 = 0 \) and \(x_4 = 1 \), so that we can select

\[\mathbf{g}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}. \]

Similarly the generalized eigenvector \(\mathbf{g}_2 \) corresponding to \(\mathbf{p}_2 \) satisfies

\[(A - \lambda_1 I)\mathbf{g}_2 = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}. \]
We obtain $x_2 = -1$ and $x_4 = 2$, so that we can select
\[
g_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 2 \end{bmatrix}.
\]

Then if
\[
T = \begin{bmatrix} p_1 & g_1 & p_2 & g_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}
\]
\[
T^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}
\]
\[
J = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix},
\]
we have $A = TJT^{-1}$ and
\[
\exp(At) = T \exp(Jt) T^{-1}
\]
with
\[
\exp(Jt) = \exp(t) = \begin{bmatrix} 1 & t & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{bmatrix}.
\]

Note that the Jordan decomposition $A = TJT^{-1}$ may be complex. There exists a real form of this decomposition, but it will not be needed in the remainder of this course.