Topics:

a) Determinant of a matrix, column operations, Laplace’s expansion.

b) Characteristic polynomial, Cayley-Hamilton theorem, eigenvalues/eigenvectors.

c) Diagonalizable matrices, Jordan form, minimal polynomial.

Determinant: To motivate the concept of determinant of a square matrix A, consider the case where A is a 2×2 matrix with columns $a_1, a_2 \in \mathbb{R}^2$. If we view \mathbb{R}^2 as embedded in the three-dimensional space \mathbb{R}^3, the outer product

$$a_1 \times a_2 = \det(a_1, a_2)e_3$$

(1)

where e_3 is the unit vector along the third axis and

$$\det(a_1, a_2) = |a_1||a_2|\sin(\theta)$$

(2)

measures the area of the parallelogram spanned by a_1 and a_2 as shown in Fig.1 below.

Figure 1: Interpretation of the determinant in two dimensions as the oriented area of the parallelogram spanned by a_1 and a_2.

In expression (2),

$$|a_i| = (a_i^T a_i)^{1/2}$$

denotes the length (Euclidean norm) of vector a_i for $i = 1, 2$ and θ is the oriented angle going from vector a_1 to vector a_2, so that $\det(a_1, a_2)$ is an oriented area in the sense that

$$\det(a_2, a_1) = -\det(a_1, a_2),$$
since when \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \) are interchanged, \(\theta \) becomes \(-\theta \), and \(\sin(-\theta) = -\sin \theta \).

From the above definition, we see that \(\det(\mathbf{a}_1, \mathbf{a}_2) = 0 \) whenever \(\sin \theta = 0 \), i.e. for \(\theta = 0, \pi \). Thus, the determinant of vectors \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \) is zero whenever they are colinear.

For the \(2 \times 2 \) case, if
\[
A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},
\]
an analytical expression equivalent to (2) is given by
\[
\det A = \det(\mathbf{a}_1, \mathbf{a}_2) = a_{11}a_{22} - a_{21}a_{12}.
\]

Consider now an \(n \times n \) matrix \(A \) with columns \(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n \). Based on the above motivation, we say that \(\det(\mathbf{a}_1, \ldots, \mathbf{a}_n) \) is a measure of the oriented volume of the parallelepiped of \(\mathbb{R}^n \) spanned by vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n \). Thus, \(\det(\mathbf{a}_1, \ldots, \mathbf{a}_n) \) is a map from \((\mathbb{R}^n)^n \) to \(\mathbb{R} \):
\[
(\mathbf{a}_1, \ldots, \mathbf{a}_n) \in (\mathbb{R}^n)^n \rightarrow \det(\mathbf{a}_1, \ldots, \mathbf{a}_n) \in \mathbb{R}
\]
which has the following properties:

(i) It is linear with respect to each vector \(\mathbf{a}_i \), \(1 \leq i \leq n \) taken separately. Thus, if \(\mathbf{x} \) and \(\mathbf{y} \) are two arbitrary vectors of \(\mathbb{R}^n \) and if \(\mathbf{u} \) and \(\mathbf{v} \) are arbitrary real numbers
\[
\det(\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, u\mathbf{x} + v\mathbf{y}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_n) = u \det(\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{x}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_n) + v \det(\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{y}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_n).
\]

(ii) If vectors \(\mathbf{a}_i \) and \(\mathbf{a}_j \) with \(i < j \) are interchanged, we have
\[
\det(\mathbf{a}_1, \ldots, \mathbf{a}_i, \mathbf{a}_j, \ldots, \mathbf{a}_n) = -\det(\mathbf{a}_1, \ldots, \mathbf{a}_j, \mathbf{a}_i, \mathbf{a}_n)
\]

(iii) If there exists a nontrivial linear dependence relation
\[
\sum_{i=1}^{n} u_i \mathbf{x}_i = 0 \quad \text{with} \quad \mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \neq 0 \tag{5}
\]
between vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n \), then
\[
\det(\mathbf{a}_1, \ldots, \mathbf{a}_n) = 0.
\]

This is due to the fact that when (5) is satisfied, the vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) belong to a lower dimensional hyperplane of \(\mathbb{R}^n \) so that the volume of the parallelepiped spanned by \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) is zero.

The above three axioms can be used to derive the following analytical expression for the determinant of \(A = (a_{ij}) \), \(1 \leq i, j \leq n \) in terms of its entries:
\[
\det A = \sum_{\pi} (-1)^{t(\pi)} a_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)}, \tag{6}
\]
where in (6) the sum is over all permutations \(\pi \) of the index set \(\{1, 2, \ldots, n\} \), and \(t(\pi) \) is the number of transpositions occurring in the permutation \(\sigma \). For example, if we consider the permutation
\[
\{1, 2, 3, 4, 5\} \xrightarrow{\pi} \{2, 4, 3, 1, 5\}
\]
\(t(\pi) \) can be computed by observing that
-2 occurs before 1
-4 occurs before 1 and 3
-3 occurs before 1
so that \(t(\pi) = 4 \).

The expression (6) shows that \(\det A \) is obtained by performing all the products of \(n \) entries of \(A \) such that one element of each row and one of each column appears in the product. In the \(3 \times 3 \) case, with
\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix},
\]
this leads to the usual expression
\[
\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.
\]

Elementary column operations: The three axioms of determinants can be used to characterize the effect of elementary column operations on matrix determinants.

(i) Multiplication of a column by \(c \neq 0 \). Let
\[
A = \begin{bmatrix}
a_1 & \ldots & a_i & \ldots & a_n
\end{bmatrix} \longrightarrow A_s = \begin{bmatrix}
a_1 & \ldots & ca_i & \ldots & a_n
\end{bmatrix}.
\]
Then, according to (3)
\[
\det A_s = c \det A.
\]

(ii) Exchange of two columns. If
\[
A = \begin{bmatrix}
a_1 & \ldots & a_i & \ldots & a_j & \ldots & a_n
\end{bmatrix} \longrightarrow A_p = \begin{bmatrix}
a_1 & \ldots & a_j & \ldots & a_i & \ldots & a_n
\end{bmatrix},
\]
then \(\det A_p = -\det A \).

(iii) Adding to a column a multiple of another column. Let
\[
A = \begin{bmatrix}
a_1 & \ldots & a_i & \ldots & a_j & \ldots & a_n
\end{bmatrix} \longrightarrow A_c = \begin{bmatrix}
a_1 & \ldots & a_i + va_j & \ldots & a_j & \ldots & a_n
\end{bmatrix},
\]
with \(v \in \mathbb{R} \). The multilinearity property (3) implies
\[
\det A_c = \det A + v \det B
\]
where the matrix
\[
B = \begin{bmatrix}
a_1 & \ldots & a_j & \ldots & a_j & \ldots & a_n
\end{bmatrix}
\]
has two identical columns, so that according to the third axiom of determinants \(\det B = 0 \). Hence we conclude that \(\det A_c = \det A \), so that an elementary linear combination of columns does not affect the determinant.
Since we can always use elementary column operations to reduce an arbitrary square matrix A to a lower triangular matrix L whose determinant is the product of its diagonal elements, the following strategy can be employed to evaluate determinants.

Step 1: Use elementary column (resp. row) operations to reduce A to a lower (resp. upper) triangular matrix L (resp. U), while keeping track of the effect of the elementary operations on the determinant of A.

Step 2: Evaluate the determinant of L (resp. U).

Example: We have

$$A = \begin{bmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{bmatrix} \quad \rightarrow \quad \begin{bmatrix}
2 & 0 & 0 & 0 \\
-1 & 3/2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{bmatrix} \quad \rightarrow \quad \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & -1 & 5/4
\end{bmatrix} = L,$$

where elementary column operations are used to bring A to the lower triangular form L. Specifically, on the first line, we multiply column 1 by $1/2$ and add it to column 2. Then on the second line we multiply column 2 by $2/3$ and add it to column 3. Finally, we multiply column 3 by $3/4$ and add it to column 4. Since L is lower triangular

$$\det A = \det L = 2 \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} = 5.$$

Laplace’s expansion: Another useful result is that the determinant of an $n \times n$ matrix A can be expanded in terms of the entries of row i as

$$\det A = \sum_{j=1}^{n} a_{ij} C_{ij} \quad (7)$$

where the cofactor C_{ij} of the (i,j)-th element a_{ij} of A is given by

$$C_{ij} = (-1)^{i+j} \det A_{ij}, \quad (8)$$

where A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the i-th row and j-th column of A. In (7) the choice of row i is arbitrary. $\det A$ admits also a similar expression in terms of the entries of column j. The above formula is particularly convenient if A contains rows or columns with many zero entries.
Example: Consider the \(n \times n \) tridiagonal matrix.

\[
A_n = \begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
& \ddots & \ddots & \ddots \\
& & 0 & -1 & 2 & -1 \\
& & & & -1 & 2 \\
& & & & & -1 & 2
\end{bmatrix}.
\]

If \(D_n = \det A_n \), by expanding \(D_n \) with respect to the first row of \(A_n \) we find

\[
D_n = 2D_{n-1} + \det \begin{bmatrix}
-1 & -1 & 0 \\
0 & 2 & -1 & 0 \\
& \ddots & \ddots & \ddots \\
& & & -1 & 2 & -1 \\
& & & & 0 & \ddots \\
& & & & & 0 & -1 & 2
\end{bmatrix}
\]

\[
= 2D_{n-1} - D_{n-2},
\]

with \(D_1 = 2, D_2 = 3 \). This yields \(D_n = n + 1 \) and for \(n = 4 \) we obtain \(D_4 = 5 \), which is exactly the result obtained in the first example on page 4.

Properties of determinants:

(i) If \(A \) and \(B \) are two square matrices of equal size, we have

\[
\det AB = \det BA = \det A \det B.
\]

(ii) Applying the above identity for \(B = A^{-1} \), we find

\[
\det A^{-1} = 1/ \det A.
\]

(iii) \(\det A^T = \det A \).

(iv) Laplace's expansion of the determinant of \(A \) can be written in matrix form as

\[
A \hat{A} = (\det A) I_n,
\]

where \(\hat{A} \) is the adjugate matrix of \(A \). \(\hat{A} = (a_{ij}, 1 \leq i, j \leq n) \) is the transpose of the matrix formed by the cofactors of \(A \), i.e., \(\hat{a}_{ij} = C_{ji} \) for all \(i \) and \(j \).

Characteristic polynomial: Let \(A \) be an \(n \times n \) matrix. Then \(a(s) = \det(sI - A) \) is the characteristic polynomial of \(A \). Using Laplace's formula to expand

\[
a(s) = \det(sI - A) = \det \begin{bmatrix}
s - a_{11} & -a_{12} & \cdots & -a_{1n} \\
-a_{21} & s - a_{22} & \cdots & -a_{2n} \\
& \ddots & \ddots & \ddots \\
& & -a_{n1} & \cdots & s - a_{nn}
\end{bmatrix},
\]

5
we see that \(a(s) \) is a polynomial of degree \(n \) where the coefficient of \(s^n \) equals 1. Thus
\[
a(s) = s^n + a_1 s^{n-1} + \cdots + a_n = \prod_{i=1}^{k} (s - \lambda_i)^{n_i},
\]
where the multiplicities \(n_i \) of roots \(\lambda_i \) with \(1 \leq i \leq k \) satisfy
\[
\sum_{i=1}^{k} n_i = n.
\]

Cayley-Hamilton theorem: An important property of matrix \(A \) is that it annihilates its characteristic polynomial, i.e.,
\[
a(A) = A^n + a_1 A^{n-1} + a_2 A^{n-2} + \cdots + a_n I_n = 0. \tag{9}
\]
This important result can be established by using the identity
\[
(sI - A)\overline{(sI - A)} = a(s)I_n \tag{10}
\]
and noting that the adjugate matrix \(\overline{sI - A} \) is a matrix polynomial of degree \(n - 1 \), so it can be written as
\[
\overline{sI - A} = R_1 s^{n-1} + R_2 s^{n-2} + \cdots + R_n. \tag{11}
\]
Substituting (11) in (10) and identifying successive coefficients of \(s^i \) with \(0 \leq i \leq n \) in decreasing order on both sides of (10)
\[
\begin{align*}
 s^n & : R_1 = I \\
 s^{n-1} & : R_2 - AR_1 = a_1 I \\
 \cdots & \\
 s^0 & : -AR_n = a_n I,
\end{align*}
\]
and progressively eliminating \(R_1, R_2, \ldots, R_n \) from the above relations yields (9).

Eigenvalues and eigenvectors: \(\lambda \in \mathbb{C} \) is an eigenvalue of \(A \) and \(\mathbf{x} \in \mathbb{C}^n \) is a right eigenvector associated with it if
\[
A \mathbf{x} = \lambda \mathbf{x}
\]
with \(\mathbf{x} \neq 0 \).

Since \((\lambda I - A) \mathbf{x} = 0 \), the matrix \(\lambda I - A \) is singular so that \(a(\lambda) = \det(\lambda I - A) = 0 \), i.e., \(\lambda \) is one of the roots \(\lambda_1, \ldots, \lambda_k \) of \(a(s) \). The eigenvalues of \(A \) can be complex, but since the coefficients \(a_{ij} \) of \(A \) are real, if \(\lambda_i \) is an eigenvalue of \(A \) with multiplicity \(n_i \), \(\lambda_i^* \) is also an eigenvalue with the same multiplicity. The eigenvalues of \(A \) are therefore symmetric with respect to the real axis, as depicted in Fig.2 below.

The right eigenvectors of \(A \) associated with distinct eigenvalues have the following property.
Lemma 1: If \(\{ \mathbf{x}_i, 1 \leq i \leq k \} \) are right eigenvectors of \(A \) associated with eigenvalues \(\{ \lambda_i, 1 \leq i \leq k \} \) such that \(\lambda_i \neq \lambda_j \) for \(i \neq j \), they are linearly independent.

Proof: Suppose there exists a nontrivial linear dependence relation between the vectors \(\mathbf{x}_i \), so that

\[
\sum_{i=1}^{k} u_i \mathbf{x}_i = 0 ,
\]

where at least one of the coefficients \(u_i \) is different from zero, say \(u_1 \neq 0 \). Then, multiplying (12) on the left by \(\prod_{i=2}^{k} (A - \lambda_i I) \) and observing that \(A - \lambda_i I \) and \(A - \lambda_j I \) commute, we find

\[
\prod_{i=2}^{k} (A - \lambda_i I) \left(\sum_{j=1}^{k} u_j \mathbf{x}_j \right) = u_1 \prod_{i=2}^{k} (\lambda_1 - \lambda_i) \mathbf{x}_1 = 0 ,
\]

which is a contradiction since \(u_1 \neq 0 \), \(\prod_{i=2}^{k} (\lambda_1 - \lambda_i) \neq 0 \) and \(\mathbf{x}_1 \neq 0 \). Thus, the vectors \(\{ \mathbf{x}_i, 1 \leq i \leq k \} \) must be linearly independent. \(\square \)

The eigenstructure of \(A \) is particularly simple when it has \(n \) distinct eigenvalues \(\lambda_1, \ldots, \lambda_n \). In this case, as shown above, the corresponding right eigenvectors \(\{ \mathbf{x}_i, 1 \leq i \leq n \} \) are linearly independent and form a basis of \(\mathbb{R}^n \). The relations \(A \mathbf{x}_i = \lambda_i \mathbf{x}_i, 1 \leq i \leq n \) can be written in matrix form as

\[
AX = \Lambda X
\]

with

\[
X = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix}
\]

and

\[
\Lambda = \text{diag} (\lambda_1, \lambda_2, \ldots, \lambda_n) .
\]

Since the columns of \(X \) form a basis of \(\mathbb{R}^n \), \(X \) is invertible so that

\[
A = X \Lambda X^{-1} .
\]

This shows that \(A \) is related to the diagonal matrix \(\Lambda \) through a similarity transformation. In this context, \(A \) is said to be diagonalizable. In this context, it is useful to observe that
Lemma 2: If A and $B = TAT^{-1}$ are related through an invertible similarity transformation T, they have the same characteristic polynomial.

Proof:

$$\det(sI - B) = \det \left(T(sI - A)T^{-1} \right)$$

$$= \det T \det(sI - A) \det T^{-1} = \det(sI - A),$$

where the last equality was obtained by using $\det T^{-1} = 1/\det T$. \hfill \Box

When A does not have distinct eigenvalues, it still may be possible to diagonalize it. This depends on whether for each eigenvalue λ_i with multiplicity n_i, we can find n_i independent eigenvectors $x_{i\ell}$, $1 \leq \ell \leq n_i$ associated to λ_i. When this is the case, the identity (13) remains valid with

$$X = \begin{bmatrix} X_1 & X_2 & \cdots & X_k \end{bmatrix},$$

$$\Lambda = \text{diag} \left(D_1, D_2, \ldots, D_k \right),$$

where

$$X_i = \begin{bmatrix} x_{i1} & \cdots & x_{i\ell} & \cdots & x_{im_i} \end{bmatrix} \quad \text{and} \quad D_i = \lambda_i I_{n_i}.$$

The columns of X are still linearly independent. To see this, assume that there exists a linear dependence relation

$$\sum_{i=1}^{k} \left(\sum_{\ell=1}^{n_i} u_{i\ell} x_{i\ell} \right) = 0$$

(15)

between the columns of X. Let

$$x_i \triangleq \sum_{\ell=1}^{n_i} u_{i\ell} x_{i\ell}.$$

Depending on whether the coefficients $u_{i\ell}$, $1 \leq \ell \leq n$ are all zero or not, x_i is either the zero vector or an eigenvector of A associated with eigenvalue λ_i (it is a linear combination of such eigenvectors). If $x_i \neq 0$ for at least one i, the relation (15) indicates that there exists a linear dependence relation between several eigenvectors of A associated to distinct eigenvalues λ_i, $1 \leq i \leq k$. According to Lemma 1, this is impossible, so that we must have $x_i = 0$ for all i. But for each i, the eigenvectors $x_{i\ell}$ with $1 \leq \ell \leq n_i$ are linearly independent, so we must have $u_{i\ell} = 0$ for all i and ℓ. Thus the columns of X are linearly independent, so that X is invertible and A admits the representation (14).

Consider now the case where A has some eigenvalues λ_i for which the number of independent eigenvectors is less than their multiplicity n_i in $o(s)$. In this case, A cannot be diagonalized, but we can represent it in terms of its generalized eigenvectors.

Definition: $x \neq 0$ is a generalized eigenvector of grade r of A if

(i) $(\lambda I - A)^{\ell} x \neq 0$ for $\ell < r$

(ii) $(\lambda I - A)^r x = 0$.
Let \(G(\lambda_i) = \{ \mathbf{x} : (\lambda I - A)^r \mathbf{x} = 0 \text{ for some } r \} \) be the generalized eigenspace of \(A \) associated to eigenvalue \(\lambda_i \). Then Lemma 1 can be extended as follows.

Lemma 3: If \(\{ \mathbf{x}_i, 1 \leq i \leq k \} \) are generalized eigenvectors of \(A \) corresponding to eigenvalues \(\{\lambda_i, 1 \leq i \leq k \} \) with \(\lambda_i \neq \lambda_j \) for \(i \neq j \), they are linearly independent.

Proof: For each \(i \), since \(\mathbf{x}_i \) is a generalized eigenvector of \(A \) corresponding to \(\lambda_i \), we have \((\lambda_i I - A)^{r_i} \mathbf{x}_i = 0 \) for some \(r_i \). Then, suppose there exists a nontrivial linear dependence relation

\[
\sum_{i=1}^{k} u_i \mathbf{x}_i = 0
\]

between the \(\mathbf{x}_i \)'s, where at last one of the coefficients \(u_i \) is different from zero, say \(u_1 \neq 0 \). Consider now the polynomials

\[
p_1(s) = (s - \lambda_1)^{r_1}, \quad p_2(s) = \prod_{i=2}^{k} (s - \lambda_i)^{r_i}.
\]

By multiplying (16) on the left by \(p_2(A) \), we find

\[
u_1 p_2(A) \mathbf{x}_1 = 0
\]

where \(u_1 \neq 0 \), so that \(p_2(A) \mathbf{x}_1 = 0 \). On the other hand, we also know that \(p_1(A) \mathbf{x}_1 = 0 \). Since \(p_1(s) \) and \(p_2(s) \) have no common roots, they are coprime, so that there exist polynomials \(m_1(s) \) and \(m_2(s) \) such that

\[
m_1(s)p_1(s) + m_2(s)p_2(s) = 1.
\]

This implies that

\[
\mathbf{x}_1 = m_1(A)p_1(A) \mathbf{x}_1 + m_2(A)p_2(A) \mathbf{x}_1 = 0,
\]

which is a contradiction since the vector \(\mathbf{x}_1 \) must be nonzero in order to be a generalized eigenvector of \(A \). \(\square \)

Then, we have:

Lemma 4: Any vector \(\mathbf{x} \) of \(\mathbb{R}^n \) can be expressed as a linear combination of vectors in \(G(\lambda_i) \) for \(1 \leq i \leq k \), i.e.,

\[
\mathbb{R}^n = G(\lambda_1) \oplus G(\lambda_2) \oplus \cdots \oplus G(\lambda_k). \tag{17}
\]

This means that a basis of \(\mathbb{R}^n \) can be obtained by combining bases of generalized eigenspaces \(G(\lambda_i) \).

Proof: According to Lemma 3, vectors belonging to different eigenspaces \(G(\lambda_i) \) are linearly independent. To show that they span \(\mathbb{R}^n \), consider the characteristic polynomial

\[
det(sI - A) = a(s) = \prod_{i=1}^{k} (s - \lambda_i)^{r_i}
\]

and let
\[p_i(s) = \prod_{j \neq i} (s - \lambda_j)^{n_j} \]
for \(1 \leq i \leq k\). The polynomials \(p_i(s)\) are coprime, so that there exist polynomials \(m_i(s)\) such that
\[1 = \sum_{i=1}^{k} m_i(s)p_i(s). \]
This implies
\[I = \sum_{i=1}^{k} m_i(A)p_i(A), \]
so that for an arbitrary vector \(x \in \mathbb{R}^n\) we have
\[x = \sum_{i=1}^{k} x_i \quad (18) \]
with
\[x_i \triangleq m_i(A)p_i(A)x. \]
For each \(i\), \(x_i\) belongs to the generalized eigenspace \(G(\lambda_i)\) since
\[(\lambda_i I - A)^{n_i}x_i = m_i(A)a(A)x = 0, \]
where the last equality uses Cayley-Hamilton’s identity \(a(A) = 0\).

The relation (18) shows that an arbitrary vector \(x\) of \(\mathbb{R}^n\) can be expressed as the linear combination of vectors in \(G(\lambda_i)\) with \(1 \leq i \leq k\). \(\square\)

Then, if \(x\) is a generalized eigenvector of grade \(r\) of \(A\) associated to eigenvalue \(\lambda\), we can construct the chain
\[
\begin{align*}
x_r &= x \\
x_{r-1} &= (A - \lambda I)x_r \\
\vdots &= \vdots \\
x_1 &= (A - \lambda I)x_2 \\
0 &= (A - \lambda I)x_1,
\end{align*}
\]
where each vector \(x_j\) belongs to \(G(\lambda)\). The only eigenvector in this chain is \(x_1\). All other vectors \(x_2, \ldots, x_r\) are generalized eigenvectors of grade \(2, \ldots, r\). The effect of \(A\) on this chain is given by
\[
A \begin{bmatrix} x_1 & x_2 & \cdots & x_r \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_r \end{bmatrix} J
\]
with
\[
J \triangleq \begin{bmatrix}
\lambda & 1 & 0 \\
\lambda & \cdots & \lambda \\
0 & \cdots & 1 \\
\end{bmatrix}.
\]
By constructing a basis for each generalized eigenspace \(G(\lambda_i) \) in terms of such chains, and letting

\[
X = [\; x_1 \; x_2 \; \ldots \; x_n \;]
\]

be the basis of \(\mathbb{R}^n \) obtained by combining all such bases of \(G(\lambda_i) \) we find that \(A \) can be expressed as

\[
A = XJX^{-1}
\]

with

\[
J = \begin{bmatrix}
J_1 & 0 & \cdots & 0 \\
0 & J_2 & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & J_s
\end{bmatrix}
\]

\[
J_j = \begin{bmatrix}
\lambda_j & 1 & 0 \\
0 & \lambda_j & 1 \\
\vdots & \vdots & \ddots \\
0 & \cdots & 0 & \lambda_j
\end{bmatrix},
\]

where each block \(J_j \) has size \(r_j \times r_j \). The matrix \(J \) is called the **Jordan form** of \(A \) and \(J_j \) is a Jordan block of size \(r_j \) corresponding to eigenvalue \(\lambda_j \). There may be several Jordan blocks with the same eigenvalue. If \(n \) is the dimension of \(A \), we have \(r_1 + r_2 + \ldots + r_s = n \).

Example: If

\[
J = \begin{bmatrix}
21 & 0 & 0 & 0 \\
0 & 21 & 0 & 0 \\
0 & 0 & 21 & 0 \\
0 & 0 & 0 & 21
\end{bmatrix},
\]

\[
J \text{ has 3 blocks of size 1, one block of size 2 and one block of size 3 associated to eigenvalue } \lambda = 2. \text{ The characteristic polynomial of } J \text{ is } a(s) = (s-2)^3, \text{ but there are only 5 eigenvectors associated to } \lambda = 2 \text{ (one for each Jordan block). These are given by}
\]

\[
e_1 = \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}, \quad e_2 = \begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}, \quad e_3 = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
e_4 = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}, \quad \text{and } e_6 = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}.
\]
These eigenvectors have a 1 in the row corresponding to the beginning of each Jordan block (remember that each Jordan block has only one eigenvector).

Minimal polynomial: Let A be an arbitrary matrix. Consider the set of all polynomials $p(s)$ such that $p(A) = 0$. The characteristic polynomial $a(s) = \det(sI - A)$ belongs to this set, since by the Cayley-Hamilton theorem $a(A) = 0$. However $a(s)$ need not be the polynomial of smallest degree which is annulled by A. The polynomial $m(s)$ of smallest degree such that $m(A) = 0$ is called the minimal polynomial of A.

An important feature of $m(s)$ is that it must divide $a(s)$, i.e., there exists a polynomial $q(s)$ such that $a(s) = m(s)q(s)$. To see why this is the case, assume that $m(s)$ does not divide $a(s)$. Then, by Euclidean division, we can find polynomials $q(s)$ and $r(s)$ such that

$$a(s) = q(s)m(s) + r(s)$$

with $\deg r(s) < \deg m(s)$. But $a(A) = m(A) = 0$, so

$$r(A) = a(A) - q(A)m(A) = 0,$$

i.e., we have constructed a polynomial $r(s)$ of smaller degree than $m(s)$ such that $r(A) = 0$, a contradiction since $m(s)$ is the minimal polynomial. Thus $m(s)$ is a divisor of $a(s)$.

To find the minimal polynomial, observe that if J is the Jordan form of A and $p(s)$ is an arbitrary polynomial, then

$$p(A) = Xp(J)X^{-1}$$

with

$$p(J) = \begin{bmatrix}
 p(J_1) & & & \\
 & \ddots & & \\
 & & p(J_j) & \\
 & & & 0 \\
 0 & & & p(J_k)
\end{bmatrix}.$$

The minimal polynomial $m(s)$ must be the polynomial $p(s)$ of least degree such that $p(J_j) = 0$ for all Jordan blocks J_j. This implies that $m(s)$ is the least common multiple of the minimal polynomials $m_j(s)$ of the Jordan block J_j. To find $m_j(s)$, note $a_j(s) = \det(sI - J_j) = (s - \lambda_j)^{r_j}$ where r_j is the size of J_j. Furthermore

$$J_j - \lambda_j I = N_j = \begin{bmatrix}
 0 & 1 & & \\
 & \ddots & \ddots & \\
 & & \ddots & 0 \\
 0 & & & 1 \\
 & & & 0
\end{bmatrix}$$

is a nilpotent matrix of grade r_j since

$$N_j^r_j = \begin{bmatrix}
 0 & 1 & & \\
 & \ddots & \ddots & \\
 & & \ddots & 1 \\
 & & & 0
\end{bmatrix} \neq 0$$

12
has ones along its \(\ell \)-th superdiagonal for \(\ell < r_j \) and \(N_j^\ell = 0 \) for \(\ell \geq r_j \). This implies that the minimal polynomial of \(J_j \) is equal to its characteristic polynomial, i.e., \(m_j(s) = a_j(s) = (s - \lambda_j)^{r_j} \).

If \(\{\lambda_1, \ldots, \lambda_k\} \) is the set of distinct eigenvalues of \(A \), the minimal polynomial (the least common multiple of the polynomials \(m_j(s) \)) is therefore given by

\[
m(s) = \prod_{i=1}^{k} (s - \lambda_i)^{r_i^{\text{max}}},
\]

where \(r_i^{\text{max}} \) is the size of the largest Jordan block associated to eigenvalue \(\lambda_i \).

Example: If we consider the matrix \(J \) given in (26), the size of the largest Jordan block associated to \(\lambda = 2 \) is 3, so that \(m(s) = (s - 2)^3 \).

Comment: At this point, it is worth noting that although the concepts of Jordan form and minimal polynomial can be useful for analytical derivations, they are somewhat unreliable from a numerical viewpoint, since small perturbations in the entries of a matrix have the effect of making all its eigenvalues distinct, thus making the computation of its Jordan form rather difficult.