Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP

Presenter: Jeremy W. Webb
Course: EEC 289Q: Reconfigurable Computing
Course Instructor: Professor Soheil Ghiasi
Outline

- Overview of M.I.T. Raw processor
- Overview of UC Davis AsAP processor
- Raw vs. AsAP
- Conclusion
- References
M.I.T. Raw Processor

- Raw Project Goals
- M.I.T. raw Architecture Workstation (Raw) Architecture
- Raw Processor Tile Array
- What’s in a Raw Tile?
- Raw Processor Tile
 - Inside the Compute Processor
 - Raw’s Networking Routing Resources
 - Raw Inter-processor Communication
- M.I.T. Raw Contributions
- M.I.T. Raw Novel Features
Raw Project Goals

1. Create an architecture that scales to 100’s-1000’s of functional units, by exploiting custom-chip like features while being “general purpose”. [8,9]

2. Support standard general purpose abstractions like context switching, caching, and instruction virtualization.
M.I.T. raw Architecture Workstation (Raw) Architecture

- Composed of a replicated processor tile. \(^8\)
- 8 stage Pipelined MIPS-like 32-bit processor \(^7\)
- Static and Dynamic Routers
- Any tile output can be routed off the edge of the chip to the I/O pins.
- Chip Bandwidth (16-tile version).
 - Single channel (32-bit) bandwidth of 7.2 Gb/s @ 225 MHz.
 - 14 channels for a total chip bandwidth of 201 Gb/s @ 225 MHz.
What’s in a Raw tile?

- 8 stage Pipelined MIPS-like 32-bit processor [7]
- Pipelined Floating Point Unit
- 32KB Data Cache
- 32KB Instruction Memory
- Interconnect Routers
Raw Processor Tile

On-chip networks
Raw’s Networking Routing Resources

- **2 Dynamic Networks**\(^7\)
 - Fire and Forget
 - Header encodes destination
 - 2 Stage router pipeline
- **2 Static Networks**
 - Software configurable crossbar
 - Interlocked and Flow Controlled
 - 5 Stage static router pipeline
 - 3 cycle nearest-neighbor ALU to ALU communication latency
 - No header overhead, but requires knowledge of communication patterns at compile time
Raw Inter-processor Communication

[5,6]
M.I.T. Raw Contributions

- Raw’s communication facilitates exploitation of new forms of parallelism in Signal Processing applications [7]
M.I.T. Raw Novel Features

- Dynamic and Static Network Routers.
- Scalability of Raw chips.
 - Fabricated Raw chips can be placed in an array to further increase the system computing performance.
- Exposes the complete details of the underlying HW architecture to the SW system.
UC Davis AsAP Processor

- AsAP Project Goals
- UC Davis Asynchronous Array of simple Processors (AsAP) Architecture
- Asynchronous Array of simple Processors
- What’s in an AsAP Tile?
- AsAP Single Processor Tile
- AsAP Contributions
- AsAP Novel Features
AsAP Project Goals

AsAP’s proposed architecture targets four key goals: [3]

1. Well matched with DSP system workloads.
2. High-throughput.
4. Address the opportunities and challenges of future VLSI fabrication technologies.
UC Davis Asynchronous Array of simple Processors (AsAP) Architecture

- Composed of a replicated processor tile.
- 9-stage pipelined reduced complexity DSP processor \[^2\]
- Four nearest neighbor inter-processor communication.
- Individual processor tile can operate at different frequencies than its neighbors.\[^2\]
- Off chip access to the I/O pins must be reached by routing to boundary processors.
- Chip Bandwidth
 - Single channel (16-bit) bandwidth of 16 Gb/s @ 800 MHz.
- The array topology of AsAP is well-suited for applications that are composed of a series of independent tasks. \[^2\]
 - Each of these tasks can be assigned to one or more processors.
Asynchronous Array of simple Processors
What’s in an AsAP tile?

• 16-bit fixed point datapath single issue CPU \[^1\]
 - Instructions for AsAP processors are 32-bits wide. \[^2\]

• ALU, MAC

• Small Instruction/Data Memories
 - 64-entry instruction memory and a 128-word data memory.\[^2\]

• Hardware address generation
 - Each processor has 4 address generators that calculate addresses for data memory. \[^2\]

• Local programmable clock oscillator

• 2 Input and 1 Output 16-bits wide and 32-words deep dual-clock FIFOs. \[^2\]

• \(~1.1\text{mm}^2/\text{processor}\) in 0.18µm CMOS

• 800 MHz targeted operation
AsAP Inter-processor Communication

- Each processor output is hard-wired to its four nearest neighbors input multiplexers.
- At power-up the input multiplexers are configured.
- As input FIFOs fill up the sourcing neighbor can be halted by asserting corresponding hold signal.
AsAP Contributions

- Provides parallel execution of independent tasks by providing many, parallel, independent processing engines\(^3\).
- AsAP specifies a homogenous 2-D array of very simple processors
 - Single-issue pipelined CPUs
- Independent tasks are mapped across processors and executed in parallel
- Allows efficient exploitation of Application-level parallelism.
AsAP Novel Features

- **AsAP**
 - Many processing elements
 - High clock rates
 - Possibly many processors inactive
 - Activity localized to increase energy efficiency and performance

![Diagram showing active, routing, and inactive (off) elements]
Raw vs. AsAP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IBM SA-27E (Raw) [4,5,6]</th>
<th>UC Davis AsAP (estimated) [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litho</td>
<td>180 nm</td>
<td>180 nm</td>
</tr>
<tr>
<td>Design Style</td>
<td>Std Cell ASIC</td>
<td>Full Custom</td>
</tr>
<tr>
<td>Clk Freq (MHz)</td>
<td>425</td>
<td>800</td>
</tr>
<tr>
<td>BW per I/O Bus</td>
<td>13.6 Gb/s</td>
<td>12.8 Gb/s</td>
</tr>
<tr>
<td># tiles/chip</td>
<td>64</td>
<td>405</td>
</tr>
<tr>
<td>CPU type</td>
<td>8-stage MIPS</td>
<td>9-stage reduced complexity DSP</td>
</tr>
<tr>
<td></td>
<td>(32-bit floating point)</td>
<td>(16-bit fixed point)</td>
</tr>
<tr>
<td>Die Area</td>
<td>331 mm2</td>
<td>~445 mm2</td>
</tr>
<tr>
<td>Tile Area</td>
<td>~5 mm2</td>
<td>1.1 mm2</td>
</tr>
</tbody>
</table>
Conclusion

The M.I.T. Raw and UC Davis AsAP processors set out to accomplish similar goals, and to some extent have accomplished them.

While Raw has a smaller number of processors per chip and more memory, AsAP has a larger number of processors per chip with the ability to distribute the memory hogging tasks over multiple processors. This will certainly allow these processors to compete in many of the same markets.
References

