Gunrock: A High-Performance, Data-Centric Abstraction for GPU Graph Computation

John Owens
Child Family Professor of Engineering and Entrepreneurship
Department of Electrical and Computer Engineering
UC Davis
w/ Yangzihao Wang, Yuechao Pan, Yuduo Wu, Carl Yang, Leyuan Wang,
Mohamed Ebeida, Chenshan Shari Yuan, Weitang Liu

Slides at http://preview.tinyurl.com/owens-nv-webinar-160426
Graphs

Twitter Dataset 1 Overview

- # Tweets: 292.7 Million +
- # Unique Users: 7,619,916
- Total Size: 232 GB

Twitter Dataset 2 Overview

- # Tweets: 1 Billion+
- # Unique Users: 94 Million+
- # Geolocated Tweets: 31 Million+
- Total Size: 146 GB

Table 1: Net Data Volume

<table>
<thead>
<tr>
<th>Data Type</th>
<th># of Records (Size)</th>
<th>Quick Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Probes</td>
<td>180 billion (5.5 TB)</td>
<td>Results of probes with different formats sent to various service ports of IPv4 addresses.</td>
</tr>
<tr>
<td>Reverse DNS</td>
<td>10.5 billion (366 GB)</td>
<td>Results of DNS name requests (reverse lookups) for addresses within the IPv4 space using 16 large DNS Servers.</td>
</tr>
<tr>
<td>TCP/IP Fingerprints</td>
<td>80 million (50 GB)</td>
<td>Results of remote OS detection fingerprinting from NMap tool.</td>
</tr>
</tbody>
</table>

Figure 1: Map of Jobs (Colored by Country)

Background and Formats: The dataset consists of 119+ Million jobs and is about 40 GB in size. There are approximately 2.1 million unique jobs in the set as many records are duplicates. To

Figure 1: IPv4 Census Map (https://www.caida.org/research/id-consumption/census-map/images/20061108.png)

Figure 1: Collection profile of Twitter Dataset 1

Figure 2: Twitter in Europe

image obtained from https://blog.twitter.com/2013/geography-tweets-3

Figure 1: Bitcoin Transactions Over Time

Bitcoin Data Set Overview (May 15, 2013)

- # Transactions: 15.8 Million+
- # Edges: 37.4 Million +
- # Senders: 5.4 Million +
- # Receivers: 6.3 Million +
- # Bitcoins Transacted: 1.4 Million +
The Ninja Problem

“I believe that in the datacenter, one question is critical: If you can’t get to peak performance on GPUs, they basically lose all their value proposition. So how can you get close to peak without becoming an architecture expert and programming/performance wizard?”

—Anonymous, Large Internet Company, 27 May 2014
Gunrock Genesis

- Summer 2013, DARPA XDATA summer camp
- Focus: to-the-metal GPU graph implementations
- 8 weeks to write (port) betweenness centrality
- Not a sustainable model!
Gunrock: Goals

- **Bottom-up**: To leverage the highest-performing GPU computing primitives for efficiency.
- **Top-down**: To be expressive enough to represent a wide variety of graph computations for usability.
Gunrock Status

- Open-source release (Apache 2.0), currently version 0.3
- http://gunrock.github.io/
- Fastest programmable GPU library for graph analytics
- Superior load-balancing/work distribution
- More powerful abstraction

Other programmable GPU frameworks ...

- ... leverage a *bulk-synchronous* model
- ... use CPU abstractions:
 - Pregel (Medusa)
 - GAS (VertexAPI2, CuSha, MapGraph)
- ... organize steps of *computation*, with two significant disadvantages:
 - Programming models are not very general
 - Kernels are small and miss opportunities for producer-consumer locality
Gunrock: Programming Model

- Graph represented as CSR (~ sparse matrix)
- **Bulk-synchronous**: series of parallel *steps* (operations) separated by global barriers
- **Data-centric**: All operations are on one or more *frontiers* of active vertices/edges
 - **Advance**: generates a new frontier through visiting the neighbor vertices/edges of elements in the current frontier. Key: Work distribution/load balancing
 - **Filter**: removes elements from frontier via validation test
 - **Compute**: user-defined vertex-centric or edge-centric computations that run in parallel
Gunrock: Programming Model

- Graph represented as CSR (~ sparse matrix)

- **Bulk-synchronous**: series of parallel steps separated by global barriers

- **Data-centric**: All operations are on one or more frontiers of active vertices/edges

- **Advance**: generates a new frontier through visiting the neighbor vertices/edges of elements in the current frontier. Key: Work distribution/load balancing

- **Filter**: removes elements from frontier via validation test

- **Compute**: user-defined vertex-centric or edge-centric computations that run in parallel

Considering new operators:
- Global
- Neighborhood
- Sampling
- Frontier-frontier intersection
Gunrock’s Data-Centric Abstraction & Bulk-Synchronous Programming

- **Data-centric abstraction**
 - *Operations* are defined on a group of vertices or edges = a *frontier*
 - *Operations* = manipulations of one or more frontiers

- **Bulk-synchronous programming**
 - *Operations* are done one by one, in order
 - Within a single operation, computing on multiple elements can be done in parallel, without order

A generic graph algorithm:

Loop until convergence

A group of V or E
Do something
Resulting group of V or E
Do something
Another resulting group of V or E
Using Gunrock

- As a programmer ...
 - Write your own Gunrock primitives (using advance, compute, filter)
 - Write your own Gunrock operators!

- As an end-user ...
 - Write an executable that runs Gunrock primitives
 - Link against a Gunrock library that provides Gunrock primitives (C linkage)
 - python
 - Julia
Graph challenges on GPUs

- Efficient parallel algorithms
- Different balance between brute-force and elegant than on CPUs (next slide)
- Load-balancing due to irregularity
- Moving beyond simple algorithms
- Graph representations
- Scalability (memory constraints)
Algorithm example: SSSP

Currently Supported Primitives

• Currently have over 10 graph primitives including:
 • Traversal-based (e.g., BFS, DOBFS, SSSP)
 • Node-ranking (e.g., HITS, SALSA, PageRank)
 • Global (e.g., connected component, MST, triangle-counting)

• LOC under 300 for each primitive, under 10 to use a primitive

• In progress:
 • Graph coloring, Maximal Independent Set
 • Community Detection
 • Subgraph Matching
Industry interest examples

- Twitter: “Who To Follow” service
 - Historically: SALSA (“Stochastic Approach for Link-Structure Analysis”)
 - Personalized PageRank generates circle of trust
 - Hubs & authorities, random walks
- Facebook
 - PageRank & Personalized PageRank
 - Label propagation
 - Graph embeddings into \mathbb{R}^n so similar nodes are close
Industry interest examples

- Twitter: “Who To Follow” service
- Historically: SALSA (“Stochastic Approach for Link-Structure Analysis”)
- Personalized PageRank generates circle of trust
- Hubs & authorities, random walks
- Facebook
 - PageRank & Personalized PageRank
 - Label propagation
- Graph embeddings into \mathbb{R}^n so similar nodes are close

Load-Balanced Traversal

- Problem: Lots of parallelism across vertices, but each vertex has a different number of neighbors
- Merrill: Depending on size of worklist, vertex work mapped to one {thread, warp, block}
- Davidson: Instead of allocating vertices to threads, allocate edges to threads
 - Requires sorted search to find start and endpts of edges
- Gunrock advantage: Best load-balancing (2–20x over Medusa)

Merrill’s per-{thread, warp, CTA} load balance

Davidson’s load-balanced partitioning
Push vs. Pull (Direction-Optimized Breadth-First Search)

- Normal operation ("push"): vertex frontier visits every outbound edge, generates list of connected unvisited vertices
- Works great when you’re expanding: more new vertices than old
- Works poorly with few unvisited vertices
Push vs. Pull

- We also support pull: Start with unvisited vertices, check which have inbound edges from frontier

- Difficult to express in compute-focused APIs

- Gunrock: Frontier is unvisited vertices; pull from that frontier
Supporting Priority Queues

- Our SSSP (standalone) implementation compares three data structures for work queues:
 - **Workfront**: All active vertices only (big improvement over Bellman-Ford)
 - **Bucketing**: Closest to delta-stepping: vertices sorted by distance from source, placed into buckets
 - **Near-far**: 2 buckets, “near” and “far”

- Near-far is best: cost of multisplit was too high on GPU (reorganizational overhead: 82% of runtime). (We published a paper on multisplit at PPoPP 2016.)

- Difficult on compute-focused APIs, but in Gunrock we can just have multiple active frontiers, one per bucket
Research Directions: Broader Graph Types

- Bipartite graphs (SALSA, matching, link prediction, personalized PageRank)
- Streaming graphs
- Mutable graphs
 - Graphs that change as a result of the computation (Borůvka minimum-spanning-tree, Delaunay triangulation)
 - Graphs that require modifying the graph to compute (Karger’s mincut)
- In general, significant data structure challenges.
- Is CSR the right format?
Gunrock vs. nvGRAPH

- Native graph representation
- Custom (but good!) load-balancing
- Open-source
- Write your own primitives
- Which primitives fit into the Gunrock model?

- Matrix-based representation
- Leverages extensive sparse-matrix infrastructure (sparse vector: a challenge!)
- API access only
- Limited set of primitives
- Which primitives fit into the Graph BLAS?

https://developer.nvidia.com/nvgraph
1-GPU Performance Comparison

- Each row: single engine on certain dataset, vs. Gunrock
- Black dots/right: Gunrock faster. White dots/left: Gunrock slower
1-GPU Performance Comparison

- 10+ times faster than single-core CPU (Boost), or PowerGraph
1-GPU Performance Comparison

- On par with fastest 2-socket CPU (Ligra) (Gunrock 16 wins, Ligra 8 wins)
1-GPU Performance Comparison

- Fastest of all GPU programmable frameworks (CuSha, MapGraph, Medusa)
1-GPU Performance Comparison

- Competitive with hardwired GPU implementations
Research Directions: Scalability

- Largest memory on a CPU: 5 TB
- On an NVIDIA GPU: 12 GB (GP100: 16 GB)
- Today: Multi-GPU, single node (next!)
- Tomorrow:
 - Out of core?
 - Multi-node?
- Long term?: heterogeneous single-chip processors
Multi-GPU Framework (for programmers)

Recap: Gunrock on single GPU

![Diagram showing the concept of Gunrock on a single GPU]

- **Input frontier**
- **Output frontier**
- Associated data (label, parent, etc.)
- Iterate until convergence
- Single GPU
Multi-GPU Framework (for programmers)

Dream: just duplicate the single GPU implementation
Reality: it won’t work, but good try!
Specify (1) how to combine frontiers, (2) what data to communicate, (3) global convergence condition.
Results: Multi-GPU Scaling

- Primitives (except DOBFS) get good speedups (averaged over 16 datasets of various types)
 BFS: 2.74x, SSSP: 2.92x, CC: 2.39x, BC: 2.22x, PR: 4.03x using 6 GPUs

- Peak DOBFS performance: 514 GTEPS with rmat_n20_512

- Gunrock can process a graph with 3.6B edges (full-friendster graph, undirected, DOBFS in 339ms, 10.7 GTEPS using 4 K40s); 50 PR iterations on the directed version (2.6B edges) took ~51 seconds
BFS: Multi-GPU Gunrock vs. Others

<table>
<thead>
<tr>
<th>graph</th>
<th>algo</th>
<th>ref.</th>
<th>ref. hw.</th>
<th>ref. perf.</th>
<th>our hw.</th>
<th>our perf.</th>
<th>comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>com-Friendster (66M, 1.81B, UD)</td>
<td>BFS</td>
<td>Bisson [5]</td>
<td>1×K20X×64</td>
<td>15.68 GTEPS</td>
<td>4×K40</td>
<td>14.1 GTEPS</td>
<td>0.90X</td>
</tr>
<tr>
<td>kron_n23_16 (8M, 256M, UD)</td>
<td>BFS</td>
<td>Bernaschi [4]</td>
<td>1×K20X×4</td>
<td>~1.3 GTEPS</td>
<td>4×K40</td>
<td>30.8 GTEPS</td>
<td>23.7X</td>
</tr>
<tr>
<td>kron_n25_32 (32M, 1.07G, D)</td>
<td>BFS</td>
<td>Fu [15]</td>
<td>2×K20×32</td>
<td>22.7 GTEPS</td>
<td>4×K40</td>
<td>32.0 GTEPS</td>
<td>1.41X</td>
</tr>
<tr>
<td>kron_n23_32 (8M, 256M, D)</td>
<td>BFS</td>
<td>Fu [15]</td>
<td>2×K20×2</td>
<td>6.3 GTEPS</td>
<td>4×K40</td>
<td>27.9 GTEPS</td>
<td>4.43X</td>
</tr>
<tr>
<td>kron_n24_32 (16.8M, 1.07G, UD)</td>
<td>BFS</td>
<td>Liu [24]</td>
<td>2×K40×1</td>
<td>15 GTEPS</td>
<td>2×K40</td>
<td>77.7 GTEPS</td>
<td>5.18X</td>
</tr>
<tr>
<td>kron_n24_32 (16.8M, 1.07G, UD)</td>
<td>BFS</td>
<td>Liu [24]</td>
<td>8×K40×1</td>
<td>18.4 GTEPS</td>
<td>4×K80</td>
<td>40.2 GTEPS</td>
<td>2.18X</td>
</tr>
<tr>
<td>twitter-mpi (52.6M, 1.96G, D)</td>
<td>BFS</td>
<td>Bebee [3]</td>
<td>1×K40×16</td>
<td>0.2242 sec</td>
<td>3×K40</td>
<td>94.31 ms</td>
<td>2.38X</td>
</tr>
<tr>
<td>rmat_n21_64 (2M, 128M, D)</td>
<td>BFS</td>
<td>Merrill [29]</td>
<td>4×C2050×1</td>
<td>8.3 GTEPS</td>
<td>4×K40</td>
<td>23.7 GTEPS</td>
<td>2.86X</td>
</tr>
</tbody>
</table>

- Gunrock generally outperforms other implementations on GPU clusters with 4–64 GPUs on both the real and generated graphs cited in their publications
- Gunrock’s “just-enough” memory allocation: critical!
- 2–5 times faster than Enterprise (Liu and Huang, SC15), a dedicated multi-GPU DOBFS implementation
NVIDIA “Pascal” (2016)

- How to scale beyond one node?
 - Scale-out: multiple nodes?
 - Scale-up: out-of-core?
- GP100 has:
 - Stacked memory (720 GB/s)
 - NVLink high-speed CPU-GPU connection (160 GB/s bidirectional)
- CUDA 8’s unified virtual memory
- On current hardware, we contend mGPU on 1 node is the right building block
Graph Matching

Cypher: Basic Example

- Declarative query langue with SQL-like clause syntax
- Visual graph patterns
- Tabular results

// get node
MATCH (a:Person {id: 0}) RETURN a

// return friends
MATCH (a:Person {id: 0})--(b) RETURN b

// return friends of friends
MATCH (a:Person {id: 0})--()-()-()--(c) RETURN c
Research Directions: Long Term

- Efficiency
- Raw peak performance
- Achieving peak performance with smaller graphs
- More and higher-level algorithms
- More customers!
- Asynchronous execution
- Graph coloring

- Rich data on vertices and edges
- What goes above Gunrock? GraphX, TinkerPop, etc.
- What goes below Gunrock?
 - Beyond CSR
 - Graph BLAS
 - Dynamic graphs

Frog: Asynchronous Graph Processing ...
http://grid.hust.edu.cn/xhshi/projects/frog.html
Thanks to …

- Yangzihao Wang, Yuechao Pan, Yuduo Wu, Carl Yang, Leyuan Wang, Mohamed Ebeida, Chenshan Shari Yuan, Weitang Liu (UC Davis)

- Nikolai Sakharnykh, Rob Zuppert, Joe Eaton, Doug Holt, Tom Reed, Ujval Kapasi, Cliff Woolley, Mark Harris, Duane Merrill, Michael Garland, David Luebke, Chandra Cheij (NVIDIA), and the CUDA Fellows program

- Vishal V, Erich Elsen, Guha Jayachandran (Onu)

- DARPA XDATA program & program managers Christopher White and Wade Shen, and Gabriela Araujo

- NSF awards ccf-1017399, oci-1032859

- UC Lab Fees Research Program Award 12-LR-238449

- Adobe and Grainger Foundation grants

- NVIDIA hardware donations & cluster access
Next steps!

- Feel free to send us questions!
 jowens@ece.ucdavis.edu

- Even better, file Gunrock issues!
 https://github.com/gunrock/gunrock/issues

- Slides from this talk at
 http://preview.tinyurl.com/owens-nv-webinar-160426