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Consider the triangle P0P1P2:
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The points P0, P1 and P2 are the vertices of the triangle.  P is a point at which interpolation will 
be performed.  For purposes of this document, point P0 has cartesian coordinates (x0,y0,w0), 
color coordinates (r0,g0,b0) and texture coordinates (u0,v0).  Points P1 and P2 are similarly de-
fined.  The cartesian coordinates are defined in perspective space, i.e., they have been multi-
plied by a perspective matrix and perspective divided.  The color and texture coordinates are 
defined in world space.  Note that we use the w-coordinate instead of z. We use this conven-
tion because w represents eye space z, i.e., the z-coordinate by which eye space (X,Y) coordi-
nates are divided to produce perspective space (x,y) coordinates.  As we will see, w is used to 
undo the perspective division so that interpolation occurs in eye space, which is equivalent to 
interpolation in world space.  Moreover, for depth priority calculations, w is preferred to per-
spective z when a fixed-point representation is used for range priority calculations.

The first step of the shading calculation is to construct a set of interpolants for point P situated 
at each pixel.  Barycentric coordinate interpolants may be calculated in a simple and straight-
forward manner from points P, P0, P1 and P2, as follows.  If we define

A0 to be the screen-space area of triangle PP1P2
A1 to be the screen-space area of triangle PP2P0
A2 to be the screen-space area of triangle PP0P1



 then we can calculate the barycentric coordinates b0, b1 and b2 as

b0 = A0/(A0 + A1 + A2)
b1 = A1/(A0 + A1 + A2)
b2 = A2/(A0 + A1 + A2) (eq. 1)

Note that, because division is performed using the sum of triangle areas, b0 + b1 + b2 = 1.  
Also, if any bi < 0, the pixel is outside the edge opposite Pi, a fact useful in scan conversion.

The areas of triangles PP1P2, PP2P0  and PP0P1 may be computed in a trivial manner.  For ex-
ample, the area A0 of triangle PP1P2 is one-half the magnitude of the cross product PP1 X PP2.  
However,   since the factor of one-half appears in both the numerator and denominator of eq. 
1, we can ignore this factor and calculate A0 as

            | x1-x y1-y |
 A0 = |PP1 X PP2| = |         |

      | x2-x y2-y |

    = (x1-x)(y2-y) - (x2-x)(y1-y)

     = (y1-y2)x + (x2-x1)y + (x1y2-x2y1)

   = α0x + β0y + γ0 (eq. 2a)

Values of α, β and γ  are analogously defined for computing A1 and A2.  Equations for these 
triangle areas may be generated via cyclic permutation of the indices 0, 1 and 2

A1 = |PP2 X PP0| = (y2-y0)x + (x0-x2)y + (x2y0-x0y2) = α1x + β1y + γ1
A2 = |PP0 X PP1| = (y0-y1)x + (x1-x0)y + (x0y1-x1y0) = α2x + β2y + γ2 (eq. 2b)

Thus to calculate the barycentric coordinates for a particular pixel, we need to compute three 
areas as in eq. 2, then use these areas as in eq. 1.  Barycentric coordinates calculated in this 
manner have the problem that they are defined in perspective space, so any interpolation us-
ing them will produce nonlinear errors in eye space.  To correct this error, the color and tex-
ture coordinates may be transformed into screen space, interpolated in screen space, and then 
transformed back into eye space, as discussed in the paper "Modeling Specular Highlights us-
ing Bézier Triangles."  The result may be expressed in terms of transformed barycentric coordi-
nates.  To accomplish the tranformation, one simply multiplies the areas of triangles PP1P2, 
PP2P0  and PP0P1 by the w-coordinates at the two exterior vertices of each triangle to obtain

b0 = w1w2A0/(w1w2A0 + w2w0A1 + w0w1A2)
b1 = w2w0A1/(w1w2A0 + w2w0A1 + w0w1A2)
b2 = w0w1A2/(w1w2A0 + w2w0A1 + w0w1A2) (eq. 3)



This surprisingly simple result may be verified by inspection of eq. 2a and remembering that 
the perspective space (x,y) coordinates are derived from their eye space (X,Y) counterparts 
through division by w

x1 = X1/w1
y1 = Y1/w1
x2 = X2/w2

 y2 = Y2/w2 (eq. 4)

Hence multiplication of eq. 2a by w1w2 undoes the perspective division.

Once the barycentric coordinates have been transformed back into eye space, linear interpola-
tion of color and texture coordinates may be accomplished by a series of dot products, for ex-
ample

g = b0g0 + b1g1 + b2g2
u = b0u0 + b1u1 + b2u2 (eq. 5)

This approach is useful not only for interpolation of texture coordinates u and v, but also for 
calculation of the proper mip-map depth.  In his paper "Pyramidal Parametrics", Lance Wil-
liams advocates the use of the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y for this pur-
pose.  These partial derivatives may be calculated analytically because u and v are functions of 
A0, A1 and A2 (eqs. 3 and  5), which are in turn functions of x and y (eq. 2).  Applying the 
chain rule of partial differentiation creates the following formulae

∂u/∂x = [w1w2α0(u0-u) + w2w0α1(u1-u) +  w0w1α2(u2-u)]/(w1w2A0 + w2w0A1 + w0w1A2)
∂u/∂y = [w1w2β0(u0-u) + w2w0β1(u1-u) +  w0w1β2(u2-u)]/(w1w2A0 + w2w0A1 + w0w1A2)
∂v/∂x = [w1w2α0(v0-v) + w2w0α1(v1-v) +  w0w1α2(v2-v)]/(w1w2A0 + w2w0A1 + w0w1A2)
∂v/∂y = [w1w2β0(v0-v) + w2w0β1(v1-v) +  w0w1β2(v2-v)]/(w1w2A0 + w2w0A1 + w0w1A2)

(eq. 6a)

A sometimes more useful form of this equation may be obtained by taking both ∂x and ∂y to 
be the pixel spacing S, and by multiplying both sides of the equation by S.  Then the total dif-
ferentials du and dv represent the instantaneous rate of change of u and v at the pixel

du = S[w1w2(α0+β0)(u0-u) + w2w0(α1+β1)(u1-u) + w0w1(α2+β2)(u2-u)]
     /(w1w2A0 + w2w0A1 + w0w1A2)

dv = S[w1w2(α0+β0)(v0-v) + w2w0(α1+β1)(v1-v) + w0w1(α2+β2)(v2-v)]
     /(w1w2A0 + w2w0A1 + w0w1A2) (eq. 6b)



In this equation, u and v are the values interpolated at the pixel via eq. 5, α and β are defined 
in eq. 2, and the denominator is the same as in eq. 3.

Inspection of eqs. 2, 3 and 6 suggests that the setup computation for each polygon involves the 
creation of nine terms:  w1w2α0, w1w2β0, w1w2γ0, w2w0α1, w2w0β1, w2w0γ1, w0w1α2, w0w1β2, 
and w0w1γ2.  Following this setup, the areas of triangles PP1P2, PP2P0  and PP0P1 may be com-
puted on a per-pixel basis as

A0 = w1w2α0x + w1w2β0y + w1w2γ0
A1 = w2w0α1x + w2w0β1y + w2w0γ1
A2 = w0w1α2x + w0w1β2y + w0w1γ2 (eq. 7)

The areas can then be used on a per-pixel basis to compute barycentric coordinates b0, b1 and 
b2 as in eq. 1, then those barycentric coordinates can be used to linearly interpolate color and 
texture coordinates as in eq. 5, as well as partial derivatives and total differentials as in eq. 6.  
One more optimization is possible.  The area equations in eq. 7 only need to be calculated for 
the first pixel shaded for each triangle, and may therefore be included in the setup computa-
tion for each triangle.  Thereafter, these areas may be updated by addition or subtraction via a 
delta calculation.  For example, if the next pixel is located one pixel (i.e., one unit) removed in 
the positive x-direction, then the areas may be updated by addition  of w1w2α0, w2w0α1 and 
w0w1α2 to the results for the previous pixel.  Similarly, if the next pixel is located one pixel 
away in the negative y-direction, then the areas may be updated by subtraction of w1w2β0, 
w2w0β1 and w0w1β2 from the results for the previous pixel.  So a scan conversion algorithm 
that proceeds from one pixel to an adjacent pixel permits calculation of barycentric coordinate 
interpolants via five additions, one reciprocal and three multiplies, as can be appreciated from 
inspection of eqs. 1 and 7.

Note that the three products w1w2, w2w0 and w0w1 appear in both the numerator and de-
nominator of eqs. 3 and 7, so we can block normalize these products and keep only the mantis-
sas of this operation.  For example, if the w-coordinates are defined as 15-bit integers, then the 
products will be 30-bit integers which we can block normalize back to 15-bit integers, discard-
ing the exponent of the normalization.  Further block normalization may be possible for the 
w1w2α0, w1w2β0, w1w2γ0, w2w0α1, w2w0β1, w2w0γ1, w0w1α2, w0w1β2, and w0w1γ2 terms.  
The aim of this block normalization is to permit the use of integer arithmetic.


