
Experiences with gpu Computing
John Owens

Assistant Professor, Electrical and Computer Engineering
Institute for Data Analysis and Visualization

University of California, Davis



The Right-Hand Turn

[H&P Figure 1.1]



Why?
• ilp increasingly difficult to extract from instruction 

stream

• Control hardware dominates μprocessors

• Complex, difficult to build and verify

• Takes substantial fraction of die

• Scales poorly

• Pay for max throughput, sustain average throughput

• Quadratic dependency checking

• Control hardware doesn’t do any math!



AMD “Deerhound” (K8L)

chip-architect.com



Go Parallel

• Time of architectural innovation

• Major cpu vendors supporting 
multicore

• Interest in general-purpose 
programmability on gpus

• Universities must teach thinking in 
parallel



Outline

• The graphics pipeline

• Graphics programmability begets gpgpu

• nvidia’s cuda gpgpu environment

• Our lessons from gpgpu

• Motivating future architectures

• Concluding thoughts



What’s Different about the GPU?

• The future of the desktop is parallel

• We just don’t know what kind of parallel

• gpus and multicore are different

• Multicore: Coarse, heavyweight threads, better performance per thread

• gpus: Fine, lightweight threads, single-thread performance is poor

• A case for the gpu

• Interaction with the world is visual

• gpus have a well-established programming model

• nvidia shipped 100m units last year, Intel even more, 500m+ total/year



GPU

The Rendering Pipeline
Application

Rasterization

Geometry

Composite

Compute 3d geometry
Make calls to graphics api

Transform geometry from 3d to 
2d (in parallel)

Generate fragments from 2d 
geometry (in parallel)

Combine fragments into image



GPU

The Programmable Pipeline
Application

Rasterization

Geometry

Composite

Compute 3d geometry
Make calls to graphics api

Transform geometry from 3d to 
2d [vertex programs]

Generate fragments from 2d 
geometry [fragment programs]

Combine fragments into image





Characteristics of Graphics

• Large computational requirements

• Massive parallelism

• Graphics pipeline designed for independent operations

• Long latencies tolerable

• Deep, feed-forward pipelines

• Hacks are ok—can tolerate lack of accuracy

• gpus are good at parallel, arithmetically intense, 
streaming-memory problems



Long-Term Trend: CPU vs. GPU

0.01

0.1

1

10

100

Pe
rf
or
m
an
ce

(

.

=
)

Pe
rf
or
m
an
ce

(

.

=
)

1995 1997.5 2000 2002.5 2005 2007.5
YearYear

CFP (.)
NV fill (.)
NV geom (.)



Recent GPU Performance Trends
Programmable 32-bit FP operations per second

Early data courtesy Ian Buck; from Owens et al. 2007 [CGF]

$548
8800GTX

$195
X1950

$240
P4X3.6

25
GB/s

8.5 GB/s

86.4 GB/s



Graphics Hardware—Task Parallel

Application

Geometry

Rasterization

Texture

Fragment

Display

Command
Application/

Command (cpu)

Command

Geometry

Rasterization
Texture

Fragment

Display

gpu

Mem

Mem



Rage 128



Triangle Setup

l2 Tex

Shader Instruction Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

NVIDIA GeForce 6800 3D Pipeline

Courtesy Nick Triantos, NVIDIA

Vertex

Fragment

Composite



Programmable Pipeline
Application

Command

Per-Surface

Tessellation

Per-Vertex

Primitive Assembly

Per-Primitive

Rasterization

Per-Fragment

Image Composition?

Per-Pixel

Display

Per-Texel Texture 
Memory

Pixel Ops

Object Space

Image Space

Texture Spaces

FB

[From Akeley and Hanrahan, Real-Time Graphics Architectures]



Generalizing the Pipeline

• Transform A to B

• Ex: Rasterization (triangles to 
fragments)

• Historically fixed function

• Process A to A

• Ex: Fragment program

• Recently programmable

Transform A to B

Process A to A



GeForce 8800 GPU

Global Memory

Thread Execution Manager

Input Assembler

Host

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store

Thread Processors Thread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread Processors

[courtesy of Ian Buck, NVIDIA]

• Built around programmable 
units

• Unified shader



Towards Programmable Graphics

• Fixed function

• Configurable, but not programmable

• Programmable shading

• Shader-centric

• Programmable shaders, but fixed pipeline

• Programmable graphics

• Customize the pipeline

• Neoptica asserts the major obstacle is programming models and tools

http://www.neoptica.com/NeopticaWhitepaper.pdf
http://www.graphicshardware.org/previous/www_2006/presentations/pharr-keynote-gh06.pdf



Programming a GPU for Graphics

Each fragment is shaded 
w/ simd program

• Shading can use values 
from texture memory

• Image can be used as 
texture on future passes

Application specifies 
geometry -> rasterized



Programming a GPU for GP Programs

• Run a simd program over 
each fragment

• “Gather” is permitted 
from texture memory

• Resulting buffer can be 
treated as texture on next 
pass

• Draw a screen-sized quad



3 Generations of GPGPU
• Making it work at all

• Functionality and tools extremely primitive

• Comparisons not rigorous

• Making it work better

• Functionality improving

• Better understanding of what we do well/poorly 

• Solid comparisons

• Software development cycle still primitive—“horizontal” model of development

• Doing it right

• How do we build stable, portable, modular building blocks and applications?



Challenge: Programming Systems

• cpu

• Scalar

• stl, gnu sl, mpi, …

• C, Fortran, …

• gcc, vendor-specific, …

• gdb, vtune, Purify, …

• Lots

• … applications

• gpu

• Stream? Data-Parallel?

• Brook, Scout, sh, Glift -> ps, rm

• glsl, Cg, hlsl, cuda/ctm …

• Vendor-specific

• Shadesmith, nvperfhud

• None

• … kernels

Programming
Model

High-Level
Abstractions/

Libraries

Low-Level
Languages

Compilers

Performance Analysis Tools Docs



Yesterday’s Vendor Support

High-Level Graphics Language

OpenGL ∂ d3d ∂

Low-Level Device Driver



Today’s New Vendor Support

High-Level Graphics Language

OpenGL ∂ d3d ∂ Compute ∂

Low-Level Device Driver

High-Level 
Compute Lang.

Low-Level
∂ API

cuda

ctm



GeForce 8800 GPU

Global Memory

Thread Execution Manager

Input Assembler

Host

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store

Thread Processors Thread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread Processors

[courtesy of Ian Buck, NVIDIA]



CUDA Hardware Abstraction
Device 

Multiprocessor N 

Multiprocessor 2 

Multiprocessor 1 

Device Memory 

Shared Memory 

Instruction 
Unit 

Processor 1 

Registers 

Processor 2

Registers

Processor M

Registers

Constant 
Cache 

Texture 
Cache 



CUDA Program Structure
Host 

Kernel 1 

Kernel 2 

Device 

Grid 1

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2

Block (1, 1) 

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread 

(4, 0)



CUDA Memory Model
Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory

Local 
Memory 

Thread (0, 0) 

Registers 

Local
Memory

Thread (1, 0)

Registers 

Block (1, 0) 

Shared Memory

Local
Memory

Thread (0, 0)

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 



The CUDA Abstraction

• Computation organized into grids of thread blocks and threads within a 
thread block

• Kernels run over thread blocks

• Kernels are simd

• Threads have arbitrary access to memory

• Threads within a thread block share 16 KB shared memory on chip

• cuda maps thread blocks to hardware

• Programmer responsible for cpu<->gpu communication, synchronization

• Interoperability of cuda & OpenGL, d3d



What I Like

• Mapping of problems into blocks

• Blocks comprise 1d, 2d, 3d grids

• Expect scalability will likely target “more blocks” rather than “more 
threads per block” or “faster/more capable threads”

• Good match to hardware



What I Like

• Software environment

• C-like language with extensions

• Emulation mode is great

• Profiling doesn’t give us much (yet) but gives us what’s 
most important

• Would like register usage information



Memory Consistency

• No guarantee of consistency between threads

• This is a deep question



What I Don’t Like (HW)

• Memory coalescing seems fairly restrictive

• Currently no concurrency between transfer and compute

• Bank conflicts are a pain to deal with



What I Don’t Like (SW)

• Shared memory declarations are awkward

• Multiple buffers, multiple types of memory

• Pointers into shared memory are awkward

• Manual synchronization is biggest source of bugs

• Bug identification is tough ...

• cuda? Driver? Our code?



GPGPU: Bottom Up
• Scan, a parallel primitive 

originally for apl, used in 
Connection Machine

• Practically interesting only in 
parallel contexts

• Efficient gpu implementation

• Good for problems that require 
global communication

• Quicksort, radix sort, sparse 
matrix ops, tridiagonal solvers, 
trees & graphs, geometry 
manipulation …

Figure courtesy Shubhabrata Sengupta 



GPGPU: Top Down

• Goal: Adaptive, multiresolution grid

• Strategy: Page-table formulation, most work 
done on gpu

• Result: First gpu support of adaptive shadow 
maps

Lefohn et al., “Glift: An Abstraction for Generic, Efficient GPU Data Structures.” ACM TOG Jan 2006.
(a) Virtual Domain (b) Adaptive Tiling (c) Page Table (d) Physical Memory (e) Adaptive Shadow Map



Lessons Learned

• Lack of abstractions, apis, libraries is a critical problem

• “Vertical” development needs to become “horizontal”

• Division of labor

• Data structure creation, access, change, update … who’s 
responsible?

• Today crippled by low-bandwidth path between cpu and 
gpu

• Lessons of ps3 are useful here



Sony PS3

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg

• cpus are good at creating & manipulating data structures

• gpus are good at accessing & updating data structures



Belief 1.

One size does not fit all.

Future computing systems will 
feature both coarse-grained thread 
parallelism and fine-grained data 

parallelism.



Belief 2.

SIMD is a strong candidate for fine-
grained parallelism.



Belief 3.

Fine-grained parallel units should 
have efficient support for 

reductions and expansions.



Belief 4.

Future heterogeneous 
architectures must be able to share 
data between heterogeneous units 

with high bandwidth.



Belief 5.

Throughput is more important than 
latency.



Belief 6.

New architectures will allow explicit 
programmer control over the 

memory hierarchy.



Belief 7.

It’s the software, stupid. 

The successful future computing 
systems will be the ones that best 

allow their programming 
environments to exploit 

parallelism.



Belief 8.

Future programs must exploit 
parallelism to continue to achieve 

performance gains. 

I believe those programs must be 
written in explicitly parallel 

languages or with e.p. libraries.



Belief 9.

It is necessary to develop parallel 
apis and abstractions that work 

across different architectures and 
programming systems.

Industry is probably not the place 
to do this.



Belief 10.

The most important new thing we 
must teach students in computing 

is how to think in parallel.



Summary

Coarse-grained 
thread-parallel

“multicore”

Fine-grained 
data-parallel 

simdHigh 
Bandwidth

Software interface
• Explicitly parallel

• Explicit management of memory hierarchy
• Works with other hw (Cell, gpu, …)



Rob Pike on Languages
 

Conclusion
        A highly parallel language used by non-experts.

   Power of notation
        Good:

                make it easier to express yourself
        Better:

                hide stuff you don't care about
        Best:

                hide stuff you do care about

   Give the language a purpose.

Exposing Parallelism

Control Flow

Data Locality

Synchronization



My GPGPU Top Ten
• The Killer App

• Programming models 
and tools

• gpu in tomorrow’s 
computer?

• Data conditionals

• Relationship to other 
parallel hw/sw

• Managing rapid change 
in hw/sw (roadmaps)

• Performance evaluation 
and cliffs

• Philosophy of faults and 
lack of precision

• Broader toolbox for 
computation / data 
structures

• Wedding graphics and 
gpgpu techniques



Acknowledgements
• Collaborators at uc Davis: Aaron Lefohn, Andy Riffel, 

Shubhabrata Sengupta, Adam Moerschell, Yao Zhang

• Pat McCormick (Los Alamos)

• Mark Harris, David Luebke, Nick Triantos, Craig Kolb 
(nvidia)

• Mark Segal (amd)

• Ian Buck, Tim Purcell, Pat Hanrahan, Bill Dally (Stanford)

• Funding: doe Office of Science, doe scidac Institute for 
Ultrascale Visualization, nsf, Los Alamos National 
Laboratory, Lockheed Martin, Chevron, uc micro, ucd



The Research Landscape 

• Thank you for supporting the University of California.

• dod funding for computing research in universities was 
cut in half between 2001 and 2005. 

• nsf cise award rates in fy2004 were 16%, lowest of all 
directorates.

• Intel’s help in both lobbying for federal funding and 
directly supporting interesting research is both 
welcomed and essential.



For more information …
• gpgpu home: http://www.gpgpu.org/ 

• Mark Harris, unc/nvidia

• gpu Gems (Addison-Wesley)

• Vol 1: 2004; Vol 2: 2005; Vol 3: 2007

• Vol 2 has nvidia GeForce 6800

• Survey paper (“A Survey of General-Purpose Computation on Graphics 
Hardware”, Owens et al., Computer Graphics Forum March 2007)

• Conferences: Siggraph, Graphics Hardware, gp2, edge

• Course notes: Siggraph ‘05–07, ieee Visualization ‘04–05, Supercomputing ‘06

• University research: Caltech, cmu, Duisberg, Illinois, Purdue, Stanford, 
suny Stonybrook, Texas, tu München, Utah, ubc, uc Davis, unc, Virginia, 
Waterloo


