

THREAD LEVEL
PARALLELISM

4/29/2009 TLP Warmup (DUE: Wed. 5/6/2009, 5PM)

Start to play with programs utilizing pthreads and Message

Passing Interface (MPI).

tlp warmup pg. 1

Thread Level Parallelism
Thanks to the TA, Marty Nicholes, for the prior project handout that I leveraged.

BACKGROUND
Suppose your company wants to purchase some new computers. There are two types of computers that you
can choose: multiple single core systems that will be clustered and fewer expensive quad-core systems.
Suppose your budget is limited. Your technical manager needs to make a purchase decision with your
suggestions about the best type of computers to purchase.

INTRODUCTION
The TLP project will be done using two similar techniques. First, using pthreads, a program will be split up into
threads, which share memory on a single system. Second, using the MPI protocol, the same program will be
split up across a cluster of systems. This presents some interesting trade-offs, but the focus of the project will
be on trading off a fast quad-core system, versus a cluster of cheaper single core systems.

TOOLCHAIN
• pthreads howto (http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html)
• MPI Documentation (http://heather.cs.ucdavis.edu/~matloff/MPI/NotesLAM.NM.html)
• General LAM MPI documentation (http://www.lam-mpi.org/tutorials/one-step/lam.php)

SAMPLE CODE

(Download source: EEC 171 001 SQ 2009 Resources / Project / TLPCode)

• dotprod.c.pthreads – Sample code that does a dot product between two vectors using pthreads
• dotprod.c.mpi – Sample code that does a dot product between two vectors using mpi

Note : dot product between vector ࢇ and ࢈ is:
ࢇ · ࢈ ൌ ∑ ܾܽ ൌ

ୀ ܽଵܾଵ ܽଶܾଶ ڮ ܾܽ , where ݊ is the length of the vectors.

USING PTHREADS
The goal here is to become familiar with the pthreads. Some steps will be provided, and some steps you will
need to determine by looking at the docs. Commands to be entered will be shown in the courier
italic font.

NOTE: when you are asked to note any items in the following steps, record values into a file that you will turn
in with the assignment.

1. First logon to one of the ECE unix systems. These systems are single core. Record the processor speed
information provided by the following command (record result in notes file):

tlp warmup pg. 2

cat /proc/cpuinfo

2. Modify the pthreads version of dotprod to use 8 threads (by modifying the max threads define), and
compile by typing:
cc -lpthread -o dotprod dotprod.c

3. Run the program, and save the output of the run.
4. Modify the pthreads version of dotprod by increasing the vector length to 10,000,000. Compile and

run it, saving the output.
5. Now logon to tetra.cs.ucdavis.edu and perform steps 1-4. Tetra is a quad core system.

USING MPI
The goal here is to become familiar with the MPI. Some steps will be provided, and some steps you will need
to determine by looking at the docs. Commands to be entered will be shown in the courier italic
font.

NOTE: when you are asked to note any items in the following steps, record values into a file that you will turn
in with the assignment.

1. First logon to one of the ECE unix systems.
2. Create a lamboot config file listing the hostname of the current system, as well as 3 other ece systems.

The configuration file tells the lamboot command which systems are part of the cluster. For example,
my configuration file, called lam_boot_schema looks like this:
indigo.ece.ucdavis.edu
mamba.ece.ucdavis.edu
redbelly.ece.ucdavis.edu
viper.ece.ucdavis.edu
Note: some other ece system names can be found in 171 001 SQ 2009 Resources /
Project/ECEhostname.txt

3. Run the lamboot command to startup up MPI. Lamboot starts up the LAM MPI daemon on all machines
you have specified in the configuration file. For example:
lamboot -v lam_boot_schema

4. Run the lamnodes command and save the output in the log file. The lamnodes command simply shows
the nodes configured into the MPI cluster.

5. Compile MPI version of the dotprod.c file, using the following command. mpicc is a wrapper for the C
compiler that includes all the necessary command line switches for the underlying compiler to find the
LAM include files, the relevant LAM libraries, etc..
mpicc -g -o dotprod dotprod.c
NOTE: remember to copy the executable file dotprod into a directory that is in your executable PATH. (for
example ~/bin)

6. Run dotprod across 4 nodes, using the following command, logging the output to hand in. If the cluster
is working correctly, you should see partial sums from each of the nodes in the cluster, and then the
final sum. The –c option specifies how many members of the cluster to run on.
mpirun -c 4 dotprod –-
NOTE: It is a good idea to run the lamclean –v command between runs. Also run the lamhalt command
when you are finished.

tlp warmup pg. 3

7. Modify the MPI version of dotprod.c to use a vector length of 10,000,000, compile and rerun. Log
the output to hand in.

SUBMISSION
Pretty easy for the warmup. Use the SmartSite to turn in: 1) the log files from the pthreads and MPI runs; 2)
the file containing the notes you recorded in response to the question, i.e., pthreads step 1; 3) a text file
named “README” that describes each of the log and note file. For the real project, you will have to turn in a
FILEINFO file that provides a quick description of each file that is part of your submission.

DUE DATE: Wednesday 5/6 at 5PM.

